Skip to main content
Log in

Lithium (fluorosulfonyl)(n-nonafluorobutanesulfonyl)imide for stabilizing cathode–electrolyte interface in sulfonamide electrolytes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rechargeable lithium metal batteries (RLMBs) have been regarded as promising successors for contemporary lithium-ion batteries, in view of their high gravimetric and volumetric energy densities. Conventional non-aqueous liquid electrolytes containing organic carbonate solvents possess high chemical reactivities with metallic lithium anode and high flammability, which induces considerable safety threats under extreme conditions (e.g., overcharging and thermal runaway). Herein, we propose the utilization of fluorinated sulfonamide (i.e., N,N-dimethyl fluorosulfonamide (DMFSA)) as solvent, together with lithium (fluorosulfonyl)(n-nonafluorobutanesulfonyl)imide (LiFNFSI) as co-salt and/or electrolyte additive for accessing safer and high-performing RLMBs. Comprehensive physical (e.g., thermal transition, viscosity, and ionic conductivity) and electrochemical (e.g., anodic stability on different electrodes) characterizations have been performed, aiming to reveal the inherent characteristics of the sulfonamide-based electrolytes and the particular role of LiFNFSI on the stabilization of LiCoO2 cathode. It has been demonstrated that the sulfonamide-based electrolytes exhibit superior flame-retardant abilities and decent ionic conductivities (> 1 mS·cm−1 at room temperature). The incorporation of LiFNFSI as co-salt and/or electrolyte additive could significantly suppress the side reactions occurring at the cathode compartment, through the preferential decompositions of the FNFSI anion. This work is anticipated to give an in-depth understanding on the working mechanism of LiFNFSI in the sulfonamide-based electrolytes, and also spurs the development of high-energy and safer RLMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M. B. Intercalation Electrodes. In Materials for Advanced Batteries. Murphy, D. W.; Broadhead, J.; Steele, B. C. H., Eds.; Springer: Boston, 1980; pp 145–161.

    Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    CAS  Google Scholar 

  3. Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 619, 694–700.

    Google Scholar 

  4. Mao, C. Y.; Wood, M.; David, L.; An, S. J.; Sheng, Y. P.; Du, Z. J.; Meyer III, H. M.; Ruther, R. E.; Wood III, D. L. Selecting the best graphite for long-life, high-energy Li-ion batteries. J. Electrochem. Soc. 2018, 165, A1837–A1845.

    CAS  Google Scholar 

  5. Armand, M.; Axmann, P.; Bresser, D.; Copley, M.; Edström, K.; Ekberg, C.; Guyomard, D.; Lestriez, B.; Novák, P.; Petranikova, M. et al. Lithium-ion batteries—Current state of the art and anticipated developments. J. Power Sources 2020, 479, 228708.

    CAS  Google Scholar 

  6. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    CAS  Google Scholar 

  7. Yao, N.; Chen, X.; Fu, Z. H.; Zhang, Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 2022, 122, 10970–11021.

    CAS  Google Scholar 

  8. Zhang, J. B.; Zhang, H. K.; Li, R. H.; Lv, L.; Lu, D.; Zhang, S. Q.; Xiao, X. Z.; Geng, S. J.; Wang, F. H.; Deng, T. et al. Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries. J. Energy Chem. 2023, 78, 71–79.

    CAS  Google Scholar 

  9. Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

    CAS  Google Scholar 

  10. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium-ion batteries: State of the art and perspectives. ChemSusChem 2015, 8, 2154–2175.

    CAS  Google Scholar 

  11. Kang, G. H.; Zhong, G.; Ma, J. B.; Yin, R.; Cai, K. N.; Jia, T. Q.; Ren, X. L.; Yu, K.; Qin, P. W.; Chen, Z. et al. Weakly solvated EC-free linear alkyl carbonate electrolytes for Ni-rich cathode in rechargeable lithium battery. iScience 2022, 25, 105710.

    CAS  Google Scholar 

  12. Borodin, O. Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode-electrolyte stabilization. Curr. Opin. Electrochem. 2019, 13, 86–93.

    CAS  Google Scholar 

  13. Jaumaux, P.; Wu, J. R.; Shanmukaraj, D.; Wang, Y. Z.; Zhou, D.; Sun, B.; Kang, F. Y.; Li, B. H.; Armand, M.; Wang, G. X. Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 2021, 31, 2008644.

    CAS  Google Scholar 

  14. Feng, X. N.; Ouyang, M. G.; Liu, X.; Lu, L. G.; Xia, Y.; He, X. M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Stor. Mater. 2018, 10, 246–267.

    Google Scholar 

  15. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

    CAS  Google Scholar 

  16. Zhang, H.; Qiao, L. X.; Kühnle, H.; Figgemeier, E.; Armand, M.; Eshetu, G. G. From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: Non-aqueous organic electrolyte and interphase perspectives. Energy Environ. Sci. 2023, 16, 11–52.

    Google Scholar 

  17. Tian, X. L.; Yi, Y. K.; Fang, B. R.; Yang, P.; Wang, T.; Liu, P.; Qu, L.; Li, M. T.; Zhang, S. Q. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 2020, 32, 9821–9848.

    CAS  Google Scholar 

  18. Yang, Q. W.; Zhang, Z. Q.; Sun, X. G.; Hu, Y. S.; Xing, H. B.; Dai, S. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 2018, 47, 2020–2064.

    CAS  Google Scholar 

  19. Ponrouch, A.; Monti, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacín, M. R. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 22–42.

    CAS  Google Scholar 

  20. Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

    CAS  Google Scholar 

  21. Li, C. Z.; Li, Y.; Chen, Z. Y.; Zhou, Y. C.; Bai, F. F.; Li, T. Hybrid diluents enable localized high-concentration electrolyte with balanced performance for high-voltage lithium-metal batteries. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.107852.

  22. Zou, Y. G.; Ma, Z.; Liu, G.; Li, Q.; Yin, D. M.; Shi, X. J.; Cao, Z.; Tian, Z. N.; Kim, H.; Guo, Y. J. et al. Non-flammable electrolyte enables high-voltage and wide-temperature lithium-ion batteries with fast charging. Angew. Chem., Int. Ed. 2023, 62, e202216189.

    CAS  Google Scholar 

  23. Pan, A. R.; Wang, Z. C.; Zhang, F. R.; Wang, L.; Xu, J. J.; Zheng, J. Y.; Hu, J. C.; Zhao, C. L.; Wu, X. D. Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4655-1.

  24. Jiang, K. S.; Hobold, G. M.; Guo, R.; Kim, K. H.; Melemed, A. M.; Wang, D. N.; Zuin, L.; Gallant, B. M. Probing the functionality of LiFSI structural derivatives as additives for Li metal anodes. ACS Energy Lett. 2022, 7, 3378–3385.

    CAS  Google Scholar 

  25. Hou, W. B.; Zhu, D. L.; Ma, S. D.; Yang, W. J.; Yan, H.; Dai, Y. High-voltage nickel-rich layered cathodes in lithium metal batteries enabled by a sulfolane/fluorinated ether/fluoroethylene carbonate-based electrolyte design. J. Power Sources 2022, 517, 230683.

    CAS  Google Scholar 

  26. Yang, T. X.; Li, S.; Wang, W. L.; Lu, J.; Fan, W. Z.; Zuo, X. X.; Nan, J. M. Nonflammable functional electrolytes with all-fluorinated solvents matching rechargeable high-voltage Li-metal batteries with Ni-rich ternary cathode. J. Power Sources 2021, 505, 230055.

    CAS  Google Scholar 

  27. Shyamsunder, A.; Beichel, W.; Klose, P.; Pang, Q.; Scherer, H.; Hoffmann, A.; Murphy, G. K.; Krossing, I.; Nazar, L. F. Inhibiting polysulfide shuttle in lithium-sulfur batteries through low-ion-pairing salts and a triflamide solvent. Angew. Chem. 2017, 129, 6288–6293.

    Google Scholar 

  28. Feng, S. T.; Huang, M. J.; Lamb, J. R.; Zhang, W. X.; Tatara, R.; Zhang, Y. R.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Molecular design of stable sulfamide- and sulfonamide-based electrolytes for aprotic Li-O2 batteries. Chem 2019, 5, 2630–2641.

    CAS  Google Scholar 

  29. Xue, W. J.; Shi, Z.; Huang, M. J.; Feng, S. T.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G. Y.; Zhang, W. X. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 2020, 13, 212–220.

    CAS  Google Scholar 

  30. Xue, W. J.; Huang, M. J.; Li, Y. T.; Zhu, Y. G.; Gao, R.; Xiao, X. H.; Zhang, W. X.; Li, S. P.; Xu, G. Y.; Yu, Y. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 2021, 6, 495–505.

    CAS  Google Scholar 

  31. Xue, W. J.; Gao, R.; Shi, Z.; Xiao, X. H.; Zhang, W. X.; Zhang, Y. R.; Zhu, Y. G.; Waluyo, I.; Li, Y.; Hill, M. R. et al. Stabilizing electrode–electrolyte interfaces to realize high-voltage Li‖LiCoO2 batteries by a sulfonamide-based electrolyte. Energy Environ. Sci. 2021, 14, 6030–6040.

    CAS  Google Scholar 

  32. Wu, H.; Song, Z. Y.; Wang, X. X.; Feng, W. F.; Zhou, Z. B.; Zhang, H. N,N-dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes. Nano Res., in press, https://doi.org/10.1007/s12274-022-4669-8.

  33. Choquette, Y.; Brisard, G.; Parent, M.; Brouillette, D.; Perron, G.; Desnoyers, J. E.; Armand, M.; Gravel, D.; Slougui, N. Sulfamides and glymes as aprotic solvents for lithium batteries. J. Electrochem. Soc. 1998, 145, 3500–3507.

    CAS  Google Scholar 

  34. Zheng, L. P.; Zhang, H.; Cheng, P. F.; Ma, Q.; Liu, J. J.; Nie, J.; Feng, W. F.; Zhou, Z. B. Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis. Electrochim. Acta 2016, 196, 169–188.

    CAS  Google Scholar 

  35. Zhang, H.; Arcelus, O.; Carrasco, J. Role of asymmetry in the physiochemical and electrochemical behaviors of perfluorinated sulfonimide anions for lithium batteries: A DFT study. Electrochim. Acta 2018, 280, 290–299.

    CAS  Google Scholar 

  36. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    CAS  Google Scholar 

  37. Zhang, H.; Feng, W. F.; Nie, J.; Zhou, Z. B. Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery. J. Fluor. Chem. 2015, 174, 49–61.

    CAS  Google Scholar 

  38. Tong, B.; Wang, J. W.; Liu, Z. J.; Ma, L. P.; Zhou, Z. B.; Peng, Z. Q. Identifying compatibility of lithium salts with LiFePO4 cathode using a symmetric cell. J. Power Sources 2018, 384, 80–85.

    CAS  Google Scholar 

  39. Song, Z. Y.; Zheng, L. P.; Cheng, P. F.; Wang, X. X.; Wu, H.; Ma, Q.; Liu, J. J.; Feng, W. F.; Nie, J.; Yu, H. L. et al. Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. J. Power Sources 2022, 526, 231105.

    CAS  Google Scholar 

  40. Armarego, W. L. F.; Chai, C. L. L. Chapter 4—Purification of organic chemicals. In Purification of Laboratory Chemicals; 6th ed. Armarego, W. L. F.; Chai, C. L. L., Eds.; Elsevier: Amsterdam, 2009; pp 88–444.

    Google Scholar 

  41. Jones, G.; Bradshaw, B. C. The measurement of the conductance of electrolytes. V. A redetermination of the conductance of standard potassium chloride solutions in absolute units. J. Am. Chem. Soc. 1933, 55, 1780–1800.

    CAS  Google Scholar 

  42. Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M. Flammability of Li-ion battery electrolytes: Flash point and self-extinguishing time measurements. J. Electrochem. Soc. 2015, 162, A3084–A3097.

    CAS  Google Scholar 

  43. Jia, H.; Yang, Z. J.; Xu, Y. B.; Gao, P. Y.; Zhong, L. R.; Kautz, D. J.; Wu, D. G.; Fliegler, B.; Engelhard, M. H.; Matthews, B. E. et al. Is nonflammability of electrolyte overrated in the overall safety performance of lithium ion batteries. A sobering revelation from a completely nonflammable electrolyte. Adv. Energy Mater. 2023, 13, 2203144.

    CAS  Google Scholar 

  44. Guo, F.; Hase, W.; Ozaki, Y.; Konno, Y.; Inatsuki, M.; Nishimura, K.; Hashimoto, N.; Fujita, O. Experimental study on flammability limits of electrolyte solvents in lithium-ion batteries using a wick combustion method. Exp. Therm. Fluid Sci. 2019, 109, 109858.

    CAS  Google Scholar 

  45. Wang, Y. K.; Li, Z. M.; Hou, Y. P.; Hao, Z. M.; Zhang, Q.; Ni, Y. X.; Lu, Y.; Yan, Z. H.; Zhang, K.; Zhao, Q. et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chem. Soc. Rev., in press, https://doi.org/10.1039/d2cs00873d.

  46. Pham, H. Q.; Lee, H. Y.; Hwang, E. H.; Kwon, Y. G.; Song, S. W. Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries. J. Power Sources 2018, 404, 13–19.

    CAS  Google Scholar 

  47. Linert, W.; Camard, A.; Armand, M.; Michot, C. Anions of low Lewis basicity for ionic solid state electrolytes. Coord. Chem. Rev. 2002, 226, 137–141.

    CAS  Google Scholar 

  48. Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Eur. Chem. Bull. 2015, 42, 92–97.

    Google Scholar 

  49. Hall, D. S.; Self, J.; Dahn, J. R. Dielectric constants for quantum chemistry and Li-ion batteries: Solvent blends of ethylene carbonate and ethyl methyl carbonate. J. Phys. Chem. C 2015, 119, 22322–22330.

    CAS  Google Scholar 

  50. Zhang, N.; Deng, T.; Zhang, S. Q.; Wang, C. H.; Chen, L. X.; Wang, C. S.; Fan, X. L. Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 2022, 34, 2107899.

    CAS  Google Scholar 

  51. Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem—Eur. J. 2004, 10, 6581–6591.

    CAS  Google Scholar 

  52. Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8, 339–355.

    CAS  Google Scholar 

  53. Tammann, G.; Hesse, W. Die abhängigkeit der viscosität von der temperatur bie unterkühlten flüssigkeiten. Z. Anorg. Allg. Chem. 1926, 156, 245–257.

    CAS  Google Scholar 

  54. Vogel, H. The law of the relation between the viscosity of liquids and the temperature. Phys. Z. 1921, 22, 645–646.

    CAS  Google Scholar 

  55. Liu, C. Y.; Ma, X. D.; Xu, F.; Zheng, L. P.; Zhang, H.; Feng, W. F.; Huang, X. J.; Armand, M.; Nie, J.; Chen, H. L. et al. Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: Effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim. Acta 2014, 149, 370–385.

    CAS  Google Scholar 

  56. Coustan, L.; Shul, G.; Bélanger, D. Electrochemical behavior of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte. Electrochem. Commun. 2017, 77, 89–92.

    CAS  Google Scholar 

  57. Chen, R. J.; Zhao, T. L.; Zhang, X. X.; Li, L.; Wu, F. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horiz. 2016, 1, 423–444.

    CAS  Google Scholar 

  58. Son, S. B.; Zhang, Z. C.; Gim, J.; Johnson, C. S.; Tsai, Y.; Kalensky, M.; Lopykinski, S.; Kahvecioglu, O.; Yang, Z. Z.; Montoya, A. T. et al. Transition metal dissolution in lithium-ion cells: A piece of the puzzle. J. Phys. Chem. C 2023, 127, 1767–1775.

    CAS  Google Scholar 

  59. Qiao, L. X.; Oteo, U.; Martinez-Ibañez, M.; Santiago, A.; Cid, R.; Sanchez-Diez, E.; Lobato, E.; Meabe, L.; Armand, M.; Zhang, H. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 2022, 21, 455–462.

    CAS  Google Scholar 

  60. Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources 1997, 68, 320–325.

    CAS  Google Scholar 

  61. Qin, Z. M.; Hong, B.; Duan, B. Y.; Hong, S.; Chen, Y. C.; Lai, Y. Q.; Feng, J. Tributyl borate as a novel electrolyte additive to improve high voltage stability of lithium cobalt oxide in carbonate-based electrolyte. Electrochim. Acta 2018, 276, 412–416.

    CAS  Google Scholar 

  62. Dai, X. Y.; Wang, L. P.; Xu, J.; Wang, Y.; Zhou, A. J.; Li, J. Z. Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering. ACS Appl. Mater. Interfaces 2014, 6, 15853–15859.

    CAS  Google Scholar 

  63. Björklund, E.; Göttlinger, M.; Edström, K.; Younesi, R.; Brandell, D. Sulfolane-based ethylene carbonate-free electrolytes for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 batteries. Batteries Supercaps 2020, 3, 201–207.

    Google Scholar 

  64. Wang, Z. G.; Wang, Z. X.; Peng, W. J.; Guo, H. J.; Li, X. H.; Wang, J. X.; Qi, A. Structure and electrochemical performance of LiCoO2 cathode material in different voltage ranges. Ionics 2014, 20, 1525–1534.

    CAS  Google Scholar 

  65. Fu, S. T.; Liao, S. L.; Nie, J.; Zhou, Z. B. N,N-dialkyl perfluoroalkanesulfonamides: Synthesis, characterization and properties. J. Fluor. Chem. 2013, 147, 56–64.

    CAS  Google Scholar 

  66. Zhang, S. D.; Qi, M. Y.; Guo, S. J.; Sun, Y. G.; Tan, X. X.; Ma, P. Z.; Li, J. Y.; Yuan, R. Z.; Cao, A. M.; Wan, L. J. Advancing to 4.6 V review and prospect in developing high-energy-density LiCoO2 cathode for lithium-ion batteries. Small Methods 2022, 6, 2200148.

    CAS  Google Scholar 

  67. Xu, K. Interfaces and interphases in batteries. J. Power Sources 2023, 559, 232652.

    CAS  Google Scholar 

  68. Tong, B.; Song, Z. Y.; Wan, H. H.; Feng, W. F.; Armand, M.; Liu, J. C.; Zhang, H.; Zhou, Z. B. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. InfoMat 2021, 3, 1364–1392.

    CAS  Google Scholar 

  69. Hirata, K.; Kawase, T.; Sumida, Y. Electrode/electrolyte interface study of LiCoO2/graphite cell using carbonate-free electrolytes based on lithium bis(fluorosulfonyl)imide and sulfolane. J. Electrochem. Soc. 2020, 167, 020518.

    CAS  Google Scholar 

  70. Zhang, H.; Judez, X.; Santiago, A.; Martinez-Ibañez, M.; Muñoz-Márquez, M. Á.; Carrasco, J.; Li, C. M.; Eshetu, G. G.; Armand, M. Fluorine-free noble salt anion for high-performance all-solid-state lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900763.

    Google Scholar 

  71. Park, M. W.; Park, S.; Choi, N. S. Unanticipated mechanism of the trimethylsilyl motif in electrolyte additives on nickel-rich cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 43694–43704.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Fundamental Research Funds for Central Universities, HUST (No. 2020kfyXJJS095), and the National Natural Science Foundation of China (Nos. 52203223 and 22279037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Zhou or Heng Zhang.

Electronic Supplementary Material

12274_2023_5726_MOESM1_ESM.pdf

Lithium (fluorosulfonyl)(n-nonafluorobutanesulfonyl)imide for stabilizing cathode–electrolyte interface in sulfonamide electrolytes

Supplementary material, approximately 75.7 MB.

Supplementary material, approximately 29.7 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Song, Z., Feng, W. et al. Lithium (fluorosulfonyl)(n-nonafluorobutanesulfonyl)imide for stabilizing cathode–electrolyte interface in sulfonamide electrolytes. Nano Res. 16, 9507–9518 (2023). https://doi.org/10.1007/s12274-023-5726-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5726-7

Keywords

Navigation