Skip to main content
Log in

Halogenated thiophene substitutions on quinoxaline unit to achieve morphology optimization in efficient organic solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Halogenated thiophenes are generally used units for constructing organic semiconductor materials for photovoltaic applications. Here, we introduced thiophene, 2-bromothiophene, and 2-chlorothiophene units to the central core of quinoxaline-based acceptors and obtained three acceptors, Qx-H, Qx-Br, and Qx-Cl, respectively. Compared with Qx-H, Qx-Br and Qx-Cl showed enhanced absorption, down-shifted energy levels, improved crystallinity, and reduced energy disorder. The improved crystallinity significantly optimized the blend morphology, leading to efficient charge generation and transport and, therefore, less bimolecular recombination. Eventually, PM6:Qx-Br-based devices exhibited an outstanding power conversion efficiency of 17.42% with a high open-circuit voltage (VOC) of 0.915 V. Furthermore, Y6 was introduced into the PM6:Qx-Br binary system to improve the light utilization, and the resulting ternary devices delivered a high PCE of 18.36%. This study demonstrated the great potential of halogenated thiophene substitution in quinoxaline-based acceptors for building high-performance organic solar cell acceptor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, Y. F.; Zhang, H.; Zhang, J. Q.; Tian, C. Y.; Shi, Y. N.; Qiu, D. D.; Zhang, Z. Q.; Lu, K.; Wei, Z. X. In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 2023, 35, 2209030.

    Article  CAS  Google Scholar 

  2. Chang, Y. L.; Zhu, X. W.; Zhu, L. Y.; Wang, Y. H.; Yang, C.; Gu, X. R.; Zhang, Y. X.; Zhang, J. Q.; Lu, K.; Sun, X. N. et al. Regioregular narrow bandgap copolymer with strong aggregation ability for high-performance semitransparent photovoltaics. Nano Energy 2021, 86, 106098.

    Article  CAS  Google Scholar 

  3. Ma, L. J.; Zhang, S. Q.; Ren, J. Z.; Wang, G. L.; Li, J. Y.; Chen, Z. H.; Yao, H. F.; Hou, J. H. Design of a fully non-fused bulk heterojunction toward efficient and low-cost organic photovoltaics. Angew. Chem., Int. Ed. 2023, 62, e202214088.

    Article  CAS  Google Scholar 

  4. Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815–1819.

    Article  CAS  Google Scholar 

  5. Chen, H.; Jeong, S. Y.; Tian, J. F.; Zhang, Y. D.; Naphade, D. R.; Alsufyani, M.; Zhang, W. M.; Griggs, S.; Hu, H. L.; Barlow S. et al. A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy Environ. Sci. 2023, 16, 1062–1070.

    Article  CAS  Google Scholar 

  6. Zhou, M. W.; Liao, C. T.; Duan, Y. W.; Xu, X. P.; Yu, L. Y.; Li, R. P.; Peng, Q. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology. Adv. Mater. 2023, 35, 2208279.

    Article  CAS  Google Scholar 

  7. Li, D. H.; Deng, N.; Fu, Y. W.; Guo, C. H.; Zhou, B. J.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K. et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 2023, 35, 2208211.

    Article  CAS  Google Scholar 

  8. Xiao, C.; Wang, X. C.; Zhong, T.; Zhou, R. X.; Zheng, X. F.; Liu, Y. R.; Hu, T. Y.; Luo, Y. X.; Sun, F. B.; Xiao, B. et al. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells. Adv. Sci. 2023, 10, 2206580.

    Article  CAS  Google Scholar 

  9. Li, C.; Zhou, J. D.; Song, J. L.; Xu, J. Q.; Zhang, H. T.; Zhang, X. N.; Guo, J.; Zhu, L.; Wei, D. H.; Han, G. C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

    Article  CAS  Google Scholar 

  10. Kong, X. L.; Zhu, C.; Zhang, J. Y.; Meng, L.; Qin, S. C.; Zhang, J. Q.; Li, J.; Wei, Z. X.; Li, Y. F. The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A-DA’D-A type acceptors. Energy Environ. Sci. 2022, 15, 2011–2020.

    Article  CAS  Google Scholar 

  11. Shi, Y. N.; Chang, Y. L.; Lu, K.; Chen, Z. H.; Zhang, J. Q.; Yan, Y. J.; Qiu, D. D.; Liu, Y. N.; Adil, M. A.; Ma, W. et al. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat. Commun. 2022, 13, 3256.

    Article  CAS  Google Scholar 

  12. Zhao, X.; An, Q. S.; Zhang, H.; Yang, C.; Mahmood, A.; Jiang, M. Y.; Jee, M. H.; Fu, B.; Tian, S. Y.; Woo, H. Y. et al. Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18% efficiency in binary organic solar cells. Angew. Chem., Int. Ed. 2023, 62, e202216340.

    Article  CAS  Google Scholar 

  13. Meng, F.; Qin, Y.; Zheng, Y. T.; Zhao, Z. H.; Sun, Y. N.; Yang, Y. G.; Gao, K.; Zhao, D. B. Structural fusion yields guest acceptors that enable Ternary organic solar cells with 18.77% efficiency. Angew. Chem., Int. Ed. 2023, 62, e202217173.

    Article  CAS  Google Scholar 

  14. Shang, A.; Luo, S. W.; Zhang, J. Q.; Zhao, H.; Xia, X. X.; Pan, M. G.; Li, C.; Chen, Y. Z.; Yi, J. C.; Lu, X. H. et al. Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains. Sci. China: Chem. 2022, 65, 1758–1766.

    Article  CAS  Google Scholar 

  15. Murugan, P.; Hu, T.; Hu, X. T.; Chen, Y. W. Fused ring A-DA’D-A (Y-series) non-fullerene acceptors: Recent developments and design strategies for organic photovoltaics. J. Mater. Chem. A 2022, 10, 17968–17987.

    Article  CAS  Google Scholar 

  16. Chen, Y. Z.; Ma, R. J.; Liu, T.; Xiao, Y. Q.; Kim, H. K.; Zhang, J. Q.; Ma, C.; Sun, H. L.; Bai, F. J.; Guo, X. G. et al. Side-chain engineering on Y-series acceptors with chlorinated end groups enables high-performance organic solar cells. Adv. Energy Mater. 2021, 11, 2003777.

    Article  CAS  Google Scholar 

  17. Xie, L.; Lan, A.; Gu, Q.; Yang, S. C.; Song, W.; Ge, J. F.; Zhou, R.; Chen, Z. Y.; Zhang, J. Q.; Zhang, X. L. et al. Alkoxy substitution on asymmetric conjugated molecule enabling over 18% efficiency in ternary organic solar cells by reducing nonradiative voltage loss. ACS Energy Lett. 2023, 8, 361–371.

    Article  CAS  Google Scholar 

  18. Xie, L.; Zhang, J. S.; Song, W.; Ge, J. F.; Li, D. D.; Zhou, R.; Zhang, J. Q.; Zhang, X. L.; Yan, D. B.; Tang, B. C. et al. Rational tuning of intermolecular and intramolecular interactions enabling high-efficiency indoor organic photovoltaics. Nano Energy 2022, 99, 107414.

    Article  CAS  Google Scholar 

  19. Xia, Z. H.; Zhang, J. S.; Gao, X.; Song, W.; Ge, J. F.; Xie, L.; Zhang, X. L.; Liu, Z. T.; Ge, Z. Y. Fine-tuning the dipole moment of asymmetric non-fullerene acceptors enabling efficient and stable organic solar cells. ACS Appl. Mater. Interfaces 2021, 13, 23983–23992.

    Article  CAS  Google Scholar 

  20. Zhang, S. P.; Ma, X. L.; Niu, L. B.; Jeong, S. Y.; Woo, H. Y.; Zhou, Z. J.; Zhang, F. J. 18.66% Efficiency of polymer solar cells employing two nonfullerene acceptors with fluorine or chlorine substitution. Sol. RRL 2023, 7, 2200957.

    Article  CAS  Google Scholar 

  21. Zhou, Z. C.; Liu, W. R.; Zhou, G. Q.; Zhang, M.; Qian, D. P.; Zhang, J. Y.; Chen, S. S.; Xu, S. J.; Yang, C.; Gao, F. et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv. Mater. 2020, 32, 1906324.

    Article  CAS  Google Scholar 

  22. Liu, F.; Zhou, L.; Liu, W. R.; Zhou, Z. C.; Yue, Q. H.; Zheng, W. Y.; Sun, R.; Liu, W. Y.; Xu, S. J.; Fan, H. J. et al. Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two-in-one strategy. Adv. Mater. 2021, 33, 2100830.

    Article  CAS  Google Scholar 

  23. Liu, W. R.; Zhang, J. Y.; Xu, S. J.; Zhu, X. Z. Efficient organic solar cells achieved at a low energy loss. Sci. Bull. 2019, 64, 1144–1147.

    Article  Google Scholar 

  24. Chen, Z. Y.; Ge, J. F.; Guo, Y. T.; Zhao, M. Y.; Shi, J. Y.; Qiu, Y.; Zhou, E. J.; Ge, Z. Y. Modification on the quinoxaline unit to achieve high open-circuit voltage and morphology optimization for organic solar cells. ACS Energy Lett. 2022, 7, 3432–3438.

    Article  CAS  Google Scholar 

  25. Chen, H. B.; Liang, H. Z.; Guo, Z. Q.; Zhu, Y.; Zhang, Z.; Li, Z. X.; Cao, X. J.; Wang, H. H.; Feng, W. Y.; Zou, Y. L. et al. Central unit fluorination of non-fullerene acceptors enables highly efficient organic solar cells with over 18% efficiency. Angew. Chem., Int. Ed. 2022, 61, e202209580.

    Article  CAS  Google Scholar 

  26. Busireddy, M. R.; Chen, T. W.; Huang, S. C.; Su, Y. J.; Wang, Y. M.; Chuang, W. T.; Chen, J. T.; Hsu, C. S. PBDB-T-based binary-OSCs achieving over 15. 83% efficiency via end-group functionalization and alkyl-chain engineering of quinoxaline-containing non-fullerene acceptors. ACS Appl. Mater. Interfaces 2022, 14, 41264–41274.

    Article  CAS  Google Scholar 

  27. Huang, J. F.; Li, S. S.; Qin, J. Z.; Xu, L.; Zhu, X. Z.; Yang, L. M. Facile modification of a noncovalently fused-ring electron acceptor enables efficient organic solar cells. ACS Appl. Mater. Interfaces 2021, 13, 45806–45814.

    Article  CAS  Google Scholar 

  28. Guo, L. Z.; Li, Q. D.; Ren, J. X.; Xu, Y. J.; Zhang, J. B.; Zhang, K.; Cai, Y. P.; Liu, S. J; Huang, F. Halogenated thiophenes serve as solvent additives in mediating morphology and achieving efficient organic solar cells. Energy Environ. Sci. 2022, 15, 5137–5148.

    Article  CAS  Google Scholar 

  29. Yuan, G. Z.; Fan, H. J.; Wan, S. S.; Jiang, Z.; Liu, Y. Q.; Liu, K. K.; Bai, H. R.; Zhu, X. Z.; Wang, J. L. A two-dimensional halogenated thiophene side-chain strategy for balancing Voc and Jsc and improving efficiency of non-fullerene small molecule acceptor-based organic solar cells. J. Mater. Chem. A 2019, 7, 20274–20284.

    Article  CAS  Google Scholar 

  30. Zhang, J. Q.; Li, Y. K.; Hu, H. W.; Zhang, G. Y.; Ade, H.; Yan, H. Chlorinated thiophene end groups for highly crystalline alkylated non-fullerene acceptors toward efficient organic solar cells. Chem. Mater. 2019, 31, 6672–6676.

    Article  CAS  Google Scholar 

  31. Wang, H.; Lu, H.; Chen, Y. N.; Ran, G. L.; Zhang, A. D.; Li, D. W.; Yu, N.; Zhang, Z.; Liu, Y. H.; Xu, X. J. et al. Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17%. Adv. Mater. 2022, 34, 2105483.

    Article  CAS  Google Scholar 

  32. Lu, H.; Li, D. W.; Ran, G. L.; Chen, Y. N.; Liu, W. L.; Wang, H.; Li, S.; Wang, X. D.; Zhang, W. K.; Liu, Y. H. et al. Designing high-performance wide bandgap polymer donors by the synergistic effect of introducing carboxylate and fluoro substituents. ACS Energy Lett. 2022, 7, 3927–3935.

    Article  CAS  Google Scholar 

  33. Wang, H.; Lu, H.; Chen, Y. N.; Zhang, A. D.; Liu, Y. Q.; Li, D. W.; Liu, Y. H.; Xu, X. J.; Bo, Z. S. A versatile planar building block with C2V symmetry for high-performance non-halogenated solvent processable polymer donors. Adv. Energy Mater. 2022, 12, 2104028.

    Article  CAS  Google Scholar 

  34. Wang, H.; Lu, H.; Chen, Y. N.; Zhang, A. D.; Liu, Y. Q.; Zhang, C. E.; Liu, Y. H.; Xu, X. J.; Bo, Z. S. Effect of polymer chain regularity on the photovoltaic performance of organic solar cells. Chin. J. Polym. Sci. 2022, 40, 996–1002.

    Article  CAS  Google Scholar 

  35. Sun, H. L.; Liu, T.; Yu, J. W.; Lau, T. K.; Zhang, G. Y.; Zhang, Y. J.; Su, M. Y.; Tang, Y. M.; Ma, R. J.; Liu, B. et al. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy Environ. Sci. 2019, 12, 3328–3337.

    Article  CAS  Google Scholar 

  36. Weng, K. K.; Ye, L. L; Zhu, L.; Xu, J. Q.; Zhou, J. J.; Feng, X.; Lu, G. H.; Tan, S. T.; Liu, F.; Sun, Y. M. Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855.

    Article  CAS  Google Scholar 

  37. Li, M. J.; Zeng, Z. M. Y.; Fan, B. B.; Zhong, W. K.; Zhang, D. F.; Zhang, X. N.; Zhang, Y.; Ying, L.; Huang, F.; Cao, Y. Tailoring the side chain of imide-functional benzotriazole based polymers to achieve internal quantum efficiency approaching 100%. J. Mater. Chem. A 2020, 8, 23519–23525.

    Article  CAS  Google Scholar 

  38. Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  39. Zhang, M. J.; Guo, X.; Ma, W.; Ade, H.; Hou, J. H. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 2015, 27, 4655–4660.

    Article  CAS  Google Scholar 

  40. Zhu, C.; Meng, L.; Zhang, J. Y.; Qin, S. C.; Lai, W. B.; Qiu, B. B.; Yuan, J.; Wan, Y.; Huang, W. C.; Li, Y. F. A quinoxaline-based DA copolymer donor achieving 17.62% efficiency of organic solar cells. Adv. Mater. 2021, 33, 2100474.

    Article  CAS  Google Scholar 

  41. Zhang, W. Q.; Sun, C. K.; Qin, S. C.; Shang, Z. Y.; Li, S. M.; Zhu, C.; Yang, G.; Meng, L.; Li, Y. F. A cost-effective alpha-fluorinated bithienyl benzodithiophene unit for high-performance polymer donor material. ACS Appl. Mater. Interfaces 2021, 13, 55403–55411.

    Article  CAS  Google Scholar 

  42. Duan, T. N.; Gao, J.; Xu, T. L.; Kan, Z. P.; Chen, W. J.; Singh, R.; Kini, G. P.; Zhong, C.; Yu, D. H.; Xiao, Z. G. et al. Simple organic donors based on halogenated oligothiophenes for all small molecule solar cells with efficiency over 11%. J. Mater. Chem. A 2020, 8, 5843–5847.

    Article  CAS  Google Scholar 

  43. Duan, T. N.; Yang, Q. G.; Sun, Z. Y.; Chen, Q. Q.; Zhang, G. Q.; Hu, D. Q.; Oh, J.; Yang, C.; Lv, J.; Feng, B. et al. Oligothiophene electron donor and electron acceptor for all small molecule organic solar cells with efficiency over 9%. Chem. Eng. J. 2023, 456, 141006.

    Article  CAS  Google Scholar 

  44. Jeong, D.; Kim, G. U.; Lee, D.; Seo, S.; Lee, S.; Han, D.; Park, H.; Ma, B. W.; Cho, S.; Kim, B. J. Sequentially fluorinated polythiophene donors for high-performance organic solar cells with 16.4% efficiency. Adv. Energy Mater. 2022, 12, 2201603.

    Article  CAS  Google Scholar 

  45. Liang, Z. Q.; Li, M. M.; Wang, Q.; Qin, Y. P.; Stuard, S. J.; Peng, Z. X.; Deng, Y. F.; Ade, H.; Ye, L.; Geng, Y. H. Optimization requirements of efficient polythiophene: Nonfullerene organic solar cells. Joule 2020, 4, 1278–1295.

    Article  CAS  Google Scholar 

  46. Lin, Y. Z.; Zhao, F. W.; Prasad, S. K. K.; Chen, J. D.; Cai, W. Z.; Zhang, Q. Q.; Chen, K.; Wu, Y.; Ma, W.; Gao, F. et al. Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with > 12% efficiency. Adv. Mater. 2018, 30, 1706363.

    Article  Google Scholar 

  47. Liu, J.; Chen, S. S.; Qian, D. P.; Gautam, B.; Yang, G. F.; Zhao, J. B.; Bergqvist, J.; Zhang, F. L.; Ma, W.; Ade, H. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

    Article  CAS  Google Scholar 

  48. Ye, Q. R.; Ge, J. F.; Li, D. D.; Chen, Z. Y.; Shi, J. Y.; Zhang, X. L.; Zhou, E. J.; Yang, D. B.; Ge, Z. Y. Modulation of the fluorination site on side-chain thiophene improved efficiency in all-small-molecule organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 33234–33241.

    Article  CAS  Google Scholar 

  49. Song, W.; Yu, K. B.; Ge, J. F.; Xie, L.; Zhou, R.; Peng, R. X.; Zhang, X. L.; Yang, M. J.; Wei, Z. X.; Ge, Z. Y. Entangled structure morphology by polymer guest enabling mechanically robust organic solar cells with efficiencies of over 16.5%. Matter 2022, 5, 1877–1889.

    Article  CAS  Google Scholar 

  50. Ge, J. F.; Hong, L.; Song, W.; Xie, L.; Zhang, J. S.; Chen, Z. Y.; Yu, K. B.; Peng, R. X.; Zhang, X. L.; Ge, Z. Y. Solvent annealing enables 15.39% efficiency all-small-molecule solar cells through improved molecule interconnection and reduced non-radiative loss. Adv. Energy Mater. 2021, 11, 2100800.

    Article  CAS  Google Scholar 

  51. Chen, H.; Zhao, T. X.; Li, L.; Tan, P.; Lai, H. J.; Zhu, Y. L.; Lai, X.; Han, L.; Zheng, N.; Guo, L. et al. 17.6%-efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor. Adv. Mater. 2021, 33, 2102778.

    Article  CAS  Google Scholar 

  52. Chen, H. B.; Zou, Y. L.; Liang, H. Z.; He, T. F.; Xu, X. Y.; Zhang, Y. X.; Ma, Z. F.; Wang, J.; Zhang, M. T.; Li, Q. W. et al. Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Sci. China Chem. 2022, 65, 1362–1373.

    Article  CAS  Google Scholar 

  53. Zou, Y. L.; Chen, H. B.; Bi, X. Q.; Xu, X. Y.; Wang, H. B.; Lin, M. L.; Ma, Z. F.; Zhang, M. T.; Li, C. X.; Wan, X. J. et al. Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells. Energy Environ. Sci. 2022, 15, 3519–3533.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by the National Natural Science Foundation of China (No. 51973043) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Lu or Zhixiang Wei.

Electronic Supplementary Material

12274_2023_5723_MOESM1_ESM.pdf

Halogenated thiophene substitutions on quinoxaline unit to achieve morphology optimization in efficient organic solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, D., Zhang, J., Lu, K. et al. Halogenated thiophene substitutions on quinoxaline unit to achieve morphology optimization in efficient organic solar cells. Nano Res. 16, 11630–11637 (2023). https://doi.org/10.1007/s12274-023-5723-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5723-x

Keywords

Navigation