Skip to main content
Log in

Quinoxaline-based Polymers with Asymmetric Aromatic Side Chain Enables 16.27% Efficiency for Organic Solar Cells

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In recent years, due to the rapid development of high-performance small molecule acceptor (SMA) materials, the researches on p-type electron donor materials for matching with current efficient SMAs have become important. By means of asymmetric strategies to optimize the energy levels and inter/intramolecular interactions of molecules, we designed and synthesized an asymmetric aromatic side chain quinoxaline-based polymer donor TPQ-0F. Meanwhile, we took advantage of F atom which could form noncovalent interaction and strong electron-withdrawing property, to obtain the optimized quinoxaline-based polymer donors TPQ-1F, TPQ-1Fi and TPQ-2F. Eventually, the binary device based on TPQ-2F achieved an efficient power conversion efficiency (PCE) of 16.27%, which attributed to balanced hole/electron mobilities, less charge carrier recombination, and more favorable aggregation morphology. Our work demonstrates the great potential of asymmetric aromatic side chain quinoxaline-based polymer donors on optimizing the morphology of blending films, improving inter/intramolecular interactions, and subtly tuning energy level, finally for more efficient organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y. F. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733.

    CAS  PubMed  Google Scholar 

  2. Zhang, Z. G.; Li, Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2021, 60, 4422–4433.

    CAS  Google Scholar 

  3. Li, Y.; Zou, Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv. Mater. 2008, 20, 2952–2958.

    CAS  Google Scholar 

  4. Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 2015, 27, 4655–4660.

    CAS  PubMed  Google Scholar 

  5. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151.

    CAS  PubMed  Google Scholar 

  6. Yuan, J.; Huang, T.; Cheng, P.; Zou, Y.; Zhang, H.; Yang, J. L.; Chang, S. Y.; Zhang, Z.; Huang, W.; Wang, R.; Meng, D.; Gao, F.; Yang, Y. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 2019, 10, 570.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y. A-DA’D-A non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 2020, 63, 1352–1366.

    CAS  Google Scholar 

  8. Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743.

    PubMed  PubMed Central  Google Scholar 

  9. Wang, D.; Qin, R.; Zhou, G.; Li, X.; Xia, R.; Li, Y.; Zhan, L.; Zhu, H.; Lu, X.; Yip, H. L.; Chen, H.; Li, C. Z. High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater. 2020, 32, e2001621.

    PubMed  Google Scholar 

  10. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2019, 361, 1094–1098.

    Google Scholar 

  11. Meng, X.; Zhang, L.; Xie, Y.; Hu, X.; Xing, Z.; Huang, Z.; Liu, C.; Tan, L.; Zhou, W.; Sun, Y.; Ma, W.; Chen, Y. A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv. Mater. 2019, 31, e1903649.

    PubMed  Google Scholar 

  12. Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat. Energy 2018, 3, 422–427.

    CAS  Google Scholar 

  13. Yan, T. T.; Song, W.; Huang, J. M.; Peng, R. X.; Huang, L. K.; Ge, Z. Y. 16.67% Rigid and 14. 06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv. Mater. 2019, 31, 1902210.

    Google Scholar 

  14. Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem organic solar cell with 20.2% efficiency. Joule 2022, 6, 171–184.

    CAS  Google Scholar 

  15. Zhang, J.; Tan, H. S.; Guo, X.; Facchetti, A.; Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 2018, 3, 720–731.

    CAS  Google Scholar 

  16. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    CAS  Google Scholar 

  17. Sun, C.; Zhu, C.; Meng, L.; Li, Y. Quinoxaline-based D-A copolymers for the applications as polymer donor and hole transport material in polymer/perovskite solar cells. Adv. Mater. 2021, 34, 2104161.

    Google Scholar 

  18. Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    CAS  PubMed  Google Scholar 

  19. Feng, L.; Yuan, J.; Zhang, Z.; Peng, H.; Zhang, Z. G.; Xu, S.; Liu, Y.; Li, Y.; Zou, Y. Thieno 3,2-b pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 31985–31992.

    CAS  PubMed  Google Scholar 

  20. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    CAS  Google Scholar 

  21. Yuan, J.; Zou, Y. The history and development of Y6. Org. Electron. 2022, 102, 106436.

    CAS  Google Scholar 

  22. Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, e1908205.

  23. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

    CAS  Google Scholar 

  24. Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y. Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%. Adv. Mater. 2021, 33, 2105301.

    CAS  Google Scholar 

  25. Bi, P.; Zhang, S.; Chen, Z.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J.; Qin, J.; Hong, L.; Hao, X.; Hou, J. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5, 2408–2419.

    CAS  Google Scholar 

  26. Chen, Z.; Song, W.; Yu, K.; Ge, J.; Zhang, J.; Xie, L.; Peng, R.; Ge, Z. Small-molecular donor guest achieves rigid 18.5% and flexible 15. 9% efficiency organic photovoltaic via fine-tuning microstructure morphology. Joule 2021, 5, 2395–2407.

    CAS  Google Scholar 

  27. Yang, C.; An, Q.; Bai, H. R.; Zhi, H. F.; Ryu, H. S.; Mahmood, A.; Zhao, X.; Zhang, S.; Woo, H. Y.; Wang, J. L. A synergistic strategy of manipulating the number of selenophene units and dissymmetric central core of small molecular acceptors enables polymer solar cells with 17.5% efficiency. Angew. Chem. Int. Ed. 2021, 60, 19241–19252.

    CAS  Google Scholar 

  28. Zhang, M.; Zhu, L.; Zhou, G.; Hao, T.; Qiu, C.; Zhao, Z.; Hu, Q.; Larson, B. W.; Zhu, H.; Ma, Z.; Tang, Z.; Feng, W.; Zhang, Y.; Russell, T. P.; Liu, F. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 2021, 12, 1–10.

    Google Scholar 

  29. Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

    CAS  Google Scholar 

  30. Jiang, K.; Wei, Q.; Lai, J. Y. L.; Peng, Z.; Kim, H. K.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 2019, 3, 3020–3033.

    CAS  Google Scholar 

  31. Zheng, Q.; Jung, B. J.; Sun, J.; Katz, H. E. Ladder-type oligo-p-phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity. J. Am. Chem. Soc. 2010, 132, 5394–5404.

    CAS  PubMed  Google Scholar 

  32. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138.

    CAS  PubMed  Google Scholar 

  33. Zhao, W. C.; Qian, D. P.; Zhang, S. Q.; Li, S. S.; Inganas, O.; Gao, F.; Hou, J. H. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739.

    CAS  PubMed  Google Scholar 

  34. Zhang, S. Q.; Qin, Y. P.; Zhu, J.; Hou, J. H. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 2018, 30, 1800868.

    Google Scholar 

  35. Bin, H. J.; Gao, L.; Zhang, Z. G.; Yang, Y. K.; Zhang, Y. D.; Zhang, C. F.; Chen, S. S.; Xue, L. W.; Yang, C.; Xiao, M.; Li, Y. F. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 2016, 7, 1–11.

    Google Scholar 

  36. Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 2016, 138, 4657–6464.

    CAS  PubMed  Google Scholar 

  37. Sun, C.; Pan, F.; Chen, S.; Wang, R.; Sun, R.; Shang, Z.; Qiu, B.; Min, J.; Lv, M.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y. Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells. Adv. Mater. 2019, 31, e1905480.

    PubMed  Google Scholar 

  38. Zhang, Z.-G.; Bai, Y.; Li, Y. Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells. Chinese J. Polym. Sci. 2021, 39, 1–13.

    Google Scholar 

  39. Xu, S.; Wang, W.; Liu, H.; Yu, X.; Qin, F.; Luo, H.; Zhou, Y.; Li, Z. A new diazabenzo[k]fluoranthene-based D-A conjugated polymer donor for efficient organic solar cells. Macromol. Rapid Commun. 2022, e2200276.

    Google Scholar 

  40. Fan, H.; Yang, H.; Zou, Y.; Dong, Y.; Fan, D.; Zheng, Y.; Wu, Y.; Cui, C.; Li, Y. Conjugated side-chains engineering of polymer donor enabling improved efficiency for polymer solar cells. J. Mater. Chem. A 2020, 8, 15919–15926.

    CAS  Google Scholar 

  41. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    CAS  Google Scholar 

  42. Fan, Q. P.; Zhu, Q. L.; Xu, Z.; Su, W. Y.; Chen, J.; Wu, J. N.; Guo, X.; Ma, W.; Zhang, M. J.; Li, Y. F. Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing. Nano Energy 2018, 48, 413–420.

    CAS  Google Scholar 

  43. Kivala, M.; Diederich, F. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Acc. Chem. Res. 2009, 42, 235–248.

    CAS  PubMed  Google Scholar 

  44. Zhu, C.; Meng, L.; Zhang, J.; Qin, S.; Lai, W.; Qiu, B.; Yuan, J.; Wan, Y.; Huang, W.; Li, Y. A quinoxaline-based D-A copolymer donor achieving 17.62% efficiency of organic solar cells. Adv. Mater. 2021, 33, 2100474.

    CAS  Google Scholar 

  45. Yuan, J.; Ouyang, J.; Cimrová, V.; Leclerc, M.; Najari, A.; Zou, Y. Development of quinoxaline based polymers for photovoltaic applications. J. Mater. Chem. C 2017, 5, 1858–1879.

    CAS  Google Scholar 

  46. Wang, X.; Chen, H.; Yuan, J.; Wei, Q.; Li, J.; Jiang, L.; Huang, J.; Li, Y.; Li, Y.; Zou, Y. Precise fluorination of polymeric donors towards efficient non-fullerene organic solar cells with balanced open circuit voltage, short circuit current and fill factor. J. Mater. Chem. A 2021, 9, 14752–14757.

    CAS  Google Scholar 

  47. Zhao, Y.; Zhou, L.; Wu, X.; Wang, X.; Li, Y.; Qi, Y.; Jiang, L.; Chen, G.; Zou, Y. Ternary organic solar cells: improved optical and morphological properties allow an enhanced efficiency. Chinese Chem. Lett. 2021, 32, 1359–1362.

    CAS  Google Scholar 

  48. Busireddy, M. R.; Chen, T. W.; Huang, S. C.; Nie, H.; Su, Y. J.; Chuang, C. T.; Kuo, P. J.; Chen, J. T.; Hsu, C. S. Fine tuning alkyl substituents on dithienoquinoxaline-based wide-bandgap polymer donors for organic photovoltaics. ACS Appl. Mater. Interfaces 2022, 14, 22353–22362.

    CAS  PubMed  Google Scholar 

  49. Lee, S. W.; Shin, H. J.; Park, B.; Shome, S.; Whang, D. R.; Bae, H.; Chung, S.; Cho, K.; Ko, S. J.; Choi, H.; Chang, D. W. Effect of electron-withdrawing chlorine substituent on morphological and photovoltaic properties of all chlorinated D-A-type quinoxaline-based polymers. ACS Appl. Mater. Interfaces 2022, 14, 19785–19794.

    CAS  PubMed  Google Scholar 

  50. Chen, S.; Feng, L.; Jia, T.; Jing, J.; Hu, Z.; Zhang, K.; Huang, F. High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors. Sci. China Chem. 2021, 64, 1192–1199.

    CAS  Google Scholar 

  51. Li, D.; Sun, C.; Yan, T.; Yuan, J.; Zou, Y. Asymmetric non-fullerene small-molecule acceptors toward high-performance organic solar cells. ACS Cent. Sci. 2021, 7, 1787–1797.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yuan, J.; Liu, Y.; Zhu, C.; Shen, P.; Wan, M.; Feng, L.; Zou, Y. Asymmetric quinoxaline-based polymer for high efficiency non-fullerene solar cells. Acta Physico-Chimica Sinica 2018, 34, 1272–1278.

    CAS  Google Scholar 

  53. Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed. 2017, 56, 3045–3049.

    CAS  Google Scholar 

  54. Kawashima, K.; Fukuhara, T.; Suda, Y.; Suzuki, Y.; Koganezawa, T.; Yoshida, H.; Ohkita, H.; Osaka, I.; Takimiya, K. Implication of fluorine atom on electronic properties, ordering structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers. J. Am. Chem. Soc. 2016, 138, 10265–10275.

    CAS  PubMed  Google Scholar 

  55. Zhang, M.; Guo, X.; Zhang, S.; Hou, J. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv. Mater. 2014, 26, 1118–1123.

    CAS  PubMed  Google Scholar 

  56. Reichenbächer, K.; Süss, H. I.; Hulliger, J. Fluorine in crystal engineering—“the little atom that could”. Chem. Soc. Rev. 2005, 34, 22–30.

    PubMed  Google Scholar 

  57. Lu, L.; Yu, L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv. Mater. 2014, 26, 4413–4430.

    CAS  PubMed  Google Scholar 

  58. Liu, Y.; Liu, J.; Chen, D.; Wang, X.; Liu, Z.; Liu, H.; Jiang, L.; Wu, C.; Zou, Y. Quinoxaline-based semiconducting polymer dots for in vivo NIR-II fluorescence imaging. Macromolecules 2019, 52, 5735–5740.

    CAS  Google Scholar 

  59. Xu, S.; Feng, L.; Yuan, J.; Zhang, Z. G.; Li, Y.; Peng, H.; Zou, Y. Hexafluoroquinoxaline based polymer for nonfullerene solar cells reaching 9. 4% efficiency. ACS Appl. Mater. Interfaces 2017, 9, 18816–18825.

    CAS  PubMed  Google Scholar 

  60. Liu, Y.; Liu, J.; Chen, D.; Wang, X.; Zhang, Z.; Yang, Y.; Jiang, L.; Qi, W.; Ye, Z.; He, S.; Liu, Q.; Xi, L.; Zou, Y.; Wu, C. Fluorination enhances NIR-II fluorescence of polymer dots for quantitative brain tumor imaging. Angew. Chem. Int. Ed. 2020, 59, 21049–21057.

    CAS  Google Scholar 

  61. Cui, W.; Zhao, Y.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. Synthesis and characterizations of poly(9,10-bisarylethynyl-2,6-anthrylene)s and poly(9,10-bisalkynyl-2,6-anthrylene). Macromolecules 2009, 42, 8021–8027.

    CAS  Google Scholar 

  62. Huo, L.; Zhang, S.; Guo, X.; Xu, F.; Li, Y.; Hou, J. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem. Int. Ed. 2011, 50, 9697–9702.

    CAS  Google Scholar 

  63. Nielsen, C. B.; Holliday, S.; Chen, H. Y.; Cryer, S. J.; McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 2015, 48, 2803–2812.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.

  65. Mihailetchi, V. D.; Wildeman, J.; Blom, P. W. M. Space-charge limited photocurrent. Phys. Rev. Lett. 2005, 94, 126602.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21875286 and 52125306,); J. Yuan acknowledges the National Natural Science Foundation of China (No. 22005347) and the Natural Science Foundation of Hunan Province (No. 2021JJ20068), L. Jiang acknowledges the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University (No. CSUZC202218) and the Natural Science Foundation of Hunan Province (No. 2021JJ30793).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yuan or Ying-Ping Zou.

Ethics declarations

The authors declare no interest conflict.

Additional information

Invited Research Article of Special Issue on “Organic Photovoltaic Polymers”

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DX., Li, SF., Wen, CL. et al. Quinoxaline-based Polymers with Asymmetric Aromatic Side Chain Enables 16.27% Efficiency for Organic Solar Cells. Chin J Polym Sci 41, 1002–1010 (2023). https://doi.org/10.1007/s10118-023-2895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2895-5

Keywords

Navigation