Skip to main content
Log in

Cobalt-doped TiO2@C hierarchical nanocomposites derived from Ti3C2 MXene as cathodes for hybrid magnesium-lithium batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

TiO2 has been explored in hybrid magnesium-lithium batteries (HMLBs) due to the advantages of low self-discharge and small volume expansion during ion insertion. However, how to improve the inherently low ionic and electrical conductivity of TiO2 is the problem that needs to be solved. In this work, a smart strategy is adopted to prepare cobalt-doped TiO2@C (Co4+-TiO2@C) hierarchical nanocomposite derived from Co(II)(OH)n@Ti3C2. Compared with TiO2@C (without cobalt doping), Co4+-TiO2@C shows the highest specific capacity (154.7 mAh·g1 at 0.1 A·g1 after 200 cycles) and extraordinary rate performance in HMLBs. The excellent electrochemical performance of Co4+-TiO2@C is ascribed to the synergistic effect of the hierarchical structure and cobalt-doping. Both experimental results and density functional theory (DFT) calculation reveal that the cobalt-doping has effectively improved the electronic conductivity and reduced the Li+ migration barrier. This work provides a new insight to design TiO2-based cathode materials with high-performance in HMLBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X. H.; Tang, Y. K.; Liu, L.; Zhang, Y.; Sheng, R.; NuLi, Y. N. Ti3C2 MXene with pillared structure for hybrid magnesium-lithium batteries cathode material with long cycle life and high rate capability. J. Colloid Interface Sci. 2022, 608, 2455–2462.

    Article  CAS  Google Scholar 

  2. Li, Y. Q.; Zuo, P. J.; Zhang, N. B.; Yin, X. C.; Li, R. N.; He, M. X.; Huo, H.; Ma, Y. L.; Du, C. Y.; Gao, Y. Z. et al. Improving electrochemical performance of rechargeable magnesium batteries with conditioning-free Mg-Cl complex electrolyte. Chem. Eng. J. 2021, 403, 126398.

    Article  CAS  Google Scholar 

  3. Sun, T. J.; Du, H. H.; Zheng, S. B.; Tao, Z. L. Inverse-spinel Mg2MnO4 material as cathode for high-performance aqueous magnesium-ion battery. J. Power Sources 2021, 515, 230643.

    Article  CAS  Google Scholar 

  4. Xue, X. L.; Song, X. M.; Yan, W.; Jiang, M. H.; Li, F. J.; Zhang, X. L.; Tie, Z. X.; Jin, Z. Cooperative cationic and anionic redox reactions in ultrathin polyvalent metal selenide nanoribbons for highperformance electrochemical magnesium-ion storage. ACS Appl. Mater. Interfaces 2022, 14, 48734–48742.

    Article  CAS  Google Scholar 

  5. Xue, X. L.; Song, X. M.; Tao, A. Y.; Yan, W.; Zhang, X. L.; Tie, Z. X.; Jin, Z. Boosting the cycling stability of rechargeable magnesium batteries by regulating the compatibility between nanostructural metal sulfide cathodes and non-nucleophilic electrolytes. Nano Res. 2023, 16, 2399–2408.

    Article  CAS  Google Scholar 

  6. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Kong, W. H.; Lin, H. N.; Wang, L.; Jin, Z. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv. Energy Mater. 2019, 9, 1900145.

    Article  Google Scholar 

  7. Ni, L. S.; Guo, R. T.; Fang, S. S.; Chen, J.; Gao, J. Q.; Mei, Y.; Zhang, S.; Deng, W. T.; Zou, G. Q.; Hou, H. S. et al. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. eScience 2022, 2, 116–124.

    Article  Google Scholar 

  8. Cheng, Y. W.; Choi, D. W.; Han, K. S.; Mueller, K. T.; Zhang, J. G.; Sprenkle, V. L.; Liu, J.; Li, G. S. Toward the design of high voltage magnesium-lithium hybrid batteries using dual-salt electrolytes. Chem. Commun. 2016, 52, 5379–5382.

    Article  CAS  Google Scholar 

  9. Gao, T.; Han, F. D.; Zhu, Y. J.; Suo, L. M.; Luo, C.; Xu, K.; Wang, C. S. Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 2015, 5, 1401507.

    Article  Google Scholar 

  10. Wang, X. S.; Ding, J. Y.; Chen, J. T.; Xue, M. Q. Improved Li+ diffusion enabled by SEI film in a high-energy-density hybrid magnesium-ion battery. J. Power Sources 2019, 441, 227190.

    Article  CAS  Google Scholar 

  11. Xue, X. L.; Chen, R. P.; Song, X. M.; Tao, A. Y.; Yan, W.; Kong, W. H.; Jin, Z. Electrochemical Mg2+ displacement driven reversible copper extrusion/intrusion reactions for high-rate rechargeable magnesium batteries. Adv. Funct. Mater. 2021, 31, 2009394.

    Article  CAS  Google Scholar 

  12. Wu, D. Z.; Zhuang, Y. C.; Wang, F.; Yang, Y.; Zeng, J.; Zhao, J. B. High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res 2023, 16, 4880–4887.

    Article  CAS  Google Scholar 

  13. Yoo, H. D.; Liang, Y. L.; Li, Y. F.; Yao, Y. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage. ACS Appl. Mater. Interfaces 2015, 7, 7001–7007.

    Article  CAS  Google Scholar 

  14. Xu, Y. N.; Xu, C.; An, Q. Y.; Wei, Q. L.; Sheng, J. Z.; Xiong, F. Y.; Pei, C. Y.; Mai, L. Q. Robust LiTi2(PO4)3 microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. J. Mater. Chem. A 2017, 5, 13950–13956.

    Article  CAS  Google Scholar 

  15. Pei, C. Y.; Xiong, F. Y.; Sheng, J. Z.; Yin, Y. M.; Tan, S. S.; Wang, D. D.; Han, C. H.; An, Q. Y.; Mai, L. Q. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 2017, 9, 17060–17066.

    Article  CAS  Google Scholar 

  16. Wang, Y. R.; Wang, C. X.; Yi, X.; Hu, Y.; Wang, L.; Ma, L. B.; Zhu, G. Y.; Chen, T.; Jin, Z. Hybrid Mg/Li-ion batteries enabled by Mg2+/Li+ Co-intercalation in VS4 nanodendrites. Energy Storage Mater. 2019, 23, 741–748.

    Article  Google Scholar 

  17. Song, T.; Paik, U. TiO2 as an active or supplemental material for lithium batteries. J. Mater. Chem. A 2016, 4, 14–31.

    Article  CAS  Google Scholar 

  18. Ran, K.; Zhang, Z. D.; Wang, W. J.; Hou, X. W.; Wang, S.; Fang, Y.; Song, J. L.; Xue, W. D.; Zhao, R. Ultra-thin graphene cube framework@TiO2 heterojunction as high-performance anode materials for lithium ion batteries. J. Colloid Interface Sci. 2022, 625, 100–108.

    Article  CAS  Google Scholar 

  19. Lan, K.; Liu, L.; Zhang, J. Y.; Wang, R. C.; Zu, L. H.; Lv, Z. R.; Wei, Q. L.; Zhao, D. Y. Precisely designed mesoscopic titania for high-volumetric-density pseudocapacitance. J. Am. Chem. Soc. 2021, 143, 14097–14105.

    Article  CAS  Google Scholar 

  20. Li, Y.; Wang, S.; He, Y. B.; Tang, L. K.; Kaneti, Y. V.; Lv, W.; Lin, Z. Q.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Li-ion and Na-ion transportation and storage properties in various sized TiO2 spheres with hierarchical pores and high tap density. J. Mater. Chem. A 2017, 5, 4359–4367.

    Article  CAS  Google Scholar 

  21. Khanna, S.; Marathey, P.; Vanpariya, A.; Paneliya, S.; Mukhopadhyay, I. In-situ preparation of titania/graphene nanocomposite via a facile sol–gel strategy: A promising anodic material for Li-ion batteries. Mater. Lett. 2021, 300, 130143.

    Article  CAS  Google Scholar 

  22. Rehman, A. U.; Ali, G.; Badshah, A.; Chung, K. Y.; Nam, K. W.; Jawad, M.; Arshad, M.; Abbas, S. M. Superior shuttling of lithium and sodium ions in manganese-doped titania@functionalized multiwall carbon nanotube anodes. Nanoscale 2017, 9, 9859–9871.

    Article  Google Scholar 

  23. Rehman, A. U.; Ali, G.; Bilal, M.; Zahid, M.; Bashir, S.; Kalam, A.; Iqbal, J.; Qayyum, M. A.; Wageh, S.; Abbas, S. M. Transformation of diffusive to capacitive kinetics in nanoscale modified Co-TiO2@CNTs composites safeguarding steady reversible capacity as sodium-ion battery anode. J. Alloys Compd. 2022, 902, 163772.

    Article  CAS  Google Scholar 

  24. Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388.

    Article  Google Scholar 

  25. Luo, L.; Zhou, K. Q.; Lian, R. Q.; Lu, Y. Z.; Zhen, Y. C.; Wang, J. S.; Mathur, S.; Hong, Z. S. Cation-deficient TiO2(B) nanowires with protons charge compensation for regulating reversible magnesium storage. Nano Energy 2020, 72, 104716.

    Article  CAS  Google Scholar 

  26. Cai, X. Y.; Xu, Y. N.; An, Q. Y.; Jiang, Y. L.; Liu, Z. A.; Xiong, F. Y.; Zou, W. Y.; Zhang, G.; Dai, Y. H.; Yu, R. H. et al. MOF derived TiO2 with reversible magnesium pseudocapacitance for ultralong-life Mg metal batteries. Chem. Eng. J. 2021, 418, 128491.

    Article  CAS  Google Scholar 

  27. Wang, Y. R.; Xue, X. L.; Liu, P. Y.; Wang, C. X.; Yi, X.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Chen, R. P.; Chen, T. et al. Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2−x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 2018, 12, 12492–12502.

    Article  CAS  Google Scholar 

  28. Li, J.; Cai, Y. J.; Yao, X.; Tian, H. L.; Su, Z. Europium modified TiO2 as a high-rate long-cycle life anode material for lithium-ion batteries. New J. Chem. 2022, 46, 2266–2271.

    Article  CAS  Google Scholar 

  29. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.

    Article  CAS  Google Scholar 

  30. Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.

    Article  CAS  Google Scholar 

  31. Hui, X. B.; Ge, X. L.; Zhao, R. Z.; Li, Z. Q.; Yin, L. W. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 2020, 30, 2005190.

    Article  CAS  Google Scholar 

  32. Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.

    Article  CAS  Google Scholar 

  33. Tian, Y. P.; Yang, C. H.; Que, W. X.; He, Y. C.; Liu, X. B.; Luo, Y. Y.; Yin, X. T.; Kong, L. B. Ni foam supported quasi-core–shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors. J. Power Sources 2017, 369, 78–86.

    Article  CAS  Google Scholar 

  34. Li, X. H.; Tang, Y. K.; Liu, L.; Gao, Y.; Zhu, C. X.; NuLi, Y. N.; Yang, T. Y. 2D Ti3C2 MXene embedded with Co(II)(OH)n nanoparticles as the cathode material for hybrid magnesium-lithiumion batteries. J. Mater. Sci. 2021, 56, 2464–2473.

    Article  CAS  Google Scholar 

  35. Ceballos-Chuc, M. C.; Ramos-Castillo, C. M.; Alvarado-Gil, J. J.; Oskam, G.; Rodríguez-Gattorno, G. Influence of brookite impurities on the Raman spectrum of TiO2 anatase nanocrystals. J. Phys. Chem. C 2018, 122, 19921–19930.

    Article  CAS  Google Scholar 

  36. Loan, T. T.; Long, N. N. Effect of Co2+ doping on Raman spectra and the phase transformation of TiO2: Co2+ nanowires. J. Phys. Chem. Solids 2019, 124, 336–342.

    Article  CAS  Google Scholar 

  37. Mohammed, M. A.; Uday, M. B.; Izman, S. Enhanced thermoelectric performance of Ca3Co4O9 doped with aluminum. J. Mater. Sci.: Mater. Electron. 2020, 31, 16569–16582.

    CAS  Google Scholar 

  38. Huang, Y. N.; Zhao, B. C.; Ang, R.; Lin, S.; Huang, Z. H.; Tan, S. G.; Liu, Y.; Song, W. H.; Sun, Y. P. Enhanced thermoelectric performance and room-temperature spin-state transition of Co4+ ions in the Ca3Co4−xRhxO9 system. J. Phys. Chem. C 2013, 117, 11459–11470.

    Article  CAS  Google Scholar 

  39. Guo, X.; Zhang, J. Q.; Song, J. J.; Wu, W. J.; Liu, H.; Wang, G. X. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306–313.

    Article  Google Scholar 

  40. Gao, X. T.; Xie, Y.; Zhu, X. D.; Sun, K. N.; Xie, X. M.; Liu, Y. T.; Yu, J. Y.; Ding, B. Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 2018, 14, 1802443.

    Article  Google Scholar 

  41. Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S. N.; Chen, Y. X.; Chen, X. H.; Song, H. H. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 2019, 29, 1901127.

    Article  Google Scholar 

  42. Kumari, R.; Singh, F.; Yadav, B. S.; Kotnala, R. K.; Peta, K. R.; Tyagi, P. K.; Kumar, S.; Puri, N. K. Ion irradiation-induced, localized sp2 to sp3 hybridized carbon transformation in walls of multiwalled carbon nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2017, 412, 115–122.

    Article  CAS  Google Scholar 

  43. Xu, M.; Lei, S. L.; Qi, J.; Dou, Q. Y.; Liu, L. Y.; Lu, Y. L.; Huang, Q.; Shi, S. Q.; Yan, X. B. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 2018, 12, 3733–3740.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22278347), the Graduate Research Innovation Project of Xinjiang (No. XJGRI2017002), and the Doctoral Innovation Program of Xinjiang University (No. XJUBSCX-2017012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lang Liu.

Electronic Supplementary Material

12274_2023_5701_MOESM1_ESM.pdf

Cobalt-doped TiO2@C hierarchical nanocomposites derived from Ti3C2 MXene as cathodes for hybrid magnesium-lithium batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tang, Y., Liu, L. et al. Cobalt-doped TiO2@C hierarchical nanocomposites derived from Ti3C2 MXene as cathodes for hybrid magnesium-lithium batteries. Nano Res. 17, 253–261 (2024). https://doi.org/10.1007/s12274-023-5701-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5701-3

Keywords

Navigation