Skip to main content
Log in

Magnesium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with high rate capability and improved cyclic stability

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mg-doped Li[Li0.2Mn0.54 − x/3Ni0.13 − x/3Co0.13 − x/3Mgx]O2 (x = 0, 0.005, 0.007, 0.01, and 0.02) cathode materials have been synthesized by mixing Mn0.54Ni0.13Co0.13(CO3)0.8 precursor, Li2CO3, and MgO, followed by high-temperature solid-state method. X-ray diffraction (XRD) results show that Mg-doped samples have enlarged interlayer distance and orderly layered structure. Scanning electron microscope (SEM) results indicate that all the samples have similar morphologies. Electrochemical tests indicate that Mg doping facilitates the activation of Li2MnO3 phase and suppresses the transformation from layered to spinel-like phase. Mg-doped samples possess improved cyclic and rate performance. The Li[Li0.2Mn0.54 − x/3Ni0.13 − x/3Co0.13 − x/3Mgx]O2 (x = 0.01) sample delivers a capacity retention of 92.07% compared with 75.25% of the undoped one after 200 cycles at 250 mA g−1 and exhibits the discharge capacity of 198.56 mAh g−1 at 500 mA g−1. The reasons for the improved electrochemical performance are the enlarged interslab spacing and the enhanced structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yuan B, Wu X, Chen Y, Huang J, Luo H, Deng S (2013) Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading. Environ Sci Technol 47:5474–5480

    Article  CAS  PubMed  Google Scholar 

  2. Zou B, Wilson JG, Zhan FB, Zeng Y (2009) An emission-weighted proximity model for air pollution exposure assessment. Sci Total Environ 407:4939–4945

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Y, Guo H, Yan G, Wang Z, Li X, Yang Z, Zheng A, Wang J (2018) Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chem Commun

  4. Wang J, Zhang G, Liu Z, Li H, Liu Y, Wang Z, Li X, Shih K, Mai L (2018) Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 44:272–278

    Article  CAS  Google Scholar 

  5. Tan L, Li X, Wang Z, Guo H, Wang J (2018) Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance Lithium–sulfur batteries. ACS Appl Mater Interfaces 10:3707–3713

    Article  CAS  PubMed  Google Scholar 

  6. Leng J, Wang Z, Li X, Guo H, Li H, Shih K, Yan G, Wang J (2017) Accurate construction of a hierarchical nickel–cobalt oxide multishell yolk–shell structure with large and ultrafast lithium storage capability. J Mater Chem A 5:14996–15001

    Article  CAS  Google Scholar 

  7. Zhang Q, Chen H, Luo L, Zhao B, Luo H, Han X, Wang J, Wang C, Yang Y, Zhu T (2018) Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance of lithium-ion batteries. Energy Environ Sci 11:669–681

    Article  CAS  Google Scholar 

  8. Tan L, Li X, Wang Z, Guo H, Wang J, An L (2017) Multifunctional separator with porous carbon/ multi-walled carbon nanotube coating for advanced lithium-sulfur batteries. Chemelectrochem 5:71–77

    Article  CAS  Google Scholar 

  9. Wu L, Zhong S, Lu J, Liu J, Lv F (2013) Synthesis of Cr-doped LiMnPO4/C cathode materials by sol–gel combined ball milling method and its electrochemical properties. Ionics 19:1061–1065

    Article  CAS  Google Scholar 

  10. Oh S, Lee JK, Byun D, Cho WI, Cho BW (2004) Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J Power Sources 132:249–255

    Article  CAS  Google Scholar 

  11. Mohan P, Kalaignan GP (2014) Structure and electrochemical performance of surface modified LaPO4 coated LiMn2O4 cathode materials for rechargeable lithium batteries. Ceram Int 40:1415–1421

    Article  CAS  Google Scholar 

  12. Huang Z, Luo P, Wang D (2017) Preparation and characterization of core-shell structured LiFePO4 /C composite using a novel carbon source for lithium-ion battery cathode. J Phys Chem Solids 102:115–120

    Article  CAS  Google Scholar 

  13. Xiao Z, Hu C, Song L, Li L, Cao Z, Zhu H, Liu J, Li X, Tang F (2017) Modification research of LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion battery. Ionics 3:1–8

    Google Scholar 

  14. Liu W, Hua W, Zheng Z, Zhong B, Zhang Z (2016) Facile synthesis of hierarchical porous Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode material with superior high-rate capability. Ionics 22:1781–1790

    Article  CAS  Google Scholar 

  15. Liu Y, Wang Q, Wang X, Wang T, Gao Y, Su M, Dou A (2015) Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with fast ionic conductor Li3VO4 coating. Ionics 21:2725–2733

    Article  CAS  Google Scholar 

  16. Song JH, Kapylou A, Choi HS, Yu BY, Matulevich E, Kang SH (2016) Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping. J Power Sources 313:65–72

    Article  CAS  Google Scholar 

  17. Zhang L, Jin K, Wang L, Zhang Y, Li X, Song Y (2015) High capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials synthesized using mesocrystal precursors for lithium-ion batteries. J Alloys Compounds 638:298–304

    Article  CAS  Google Scholar 

  18. Jin Y, Xu Y, Sun X, Xiong L, Mao S (2016) Electrochemically active MnO2 coated Li1.2Ni0.18Co0.04Mn0.58O2 cathode with highly improved initial coulombic efficiency. Appl Surf Sci 384:125–134

    Article  CAS  Google Scholar 

  19. Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S (2014) Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J Power Sources 247:20–25

    Article  CAS  Google Scholar 

  20. He X (2016) A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay. J Mater Chem A 4:7230–7237

    Article  CAS  Google Scholar 

  21. Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang JG (2013) Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett 13:3824–3830

    Article  CAS  PubMed  Google Scholar 

  22. Zhang S, Gu H, Pan H, Yang S, Du W, Li X, Gao M, Liu Y, Zhu M, Ouyang L (2016) A novel strategy to suppress capacity and voltage fading of Li and Mn-rich layered oxide cathode material for Lithium-ion batteries. Adv Energy Mater 7:1601066

    Article  CAS  Google Scholar 

  23. Chen H, Hu Q, Huang Z, He Z, Wang Z, Guo H, Li X (2016) Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram Int 42:263–269

    Article  CAS  Google Scholar 

  24. Zhou L, Wu H, Tian M, Zheng Q, Xu C, Lin D (2016) Enhanced cycling stability and rate capability of Bi2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries. RSC Adv 6:69790–69797

    Article  CAS  Google Scholar 

  25. Li N, An R, Su Y, Wu F, Bao L, Chen L, Zheng Y, Shou H, Chen S (2013) The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. J Mater Chem A 1:9760–9767

    Article  CAS  Google Scholar 

  26. Jin X, Xu Q, Liu X, Yuan X, Liu H (2016) Improvement in rate capability of lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 by Mo substitution. Ionics 22:1369–1376

    Article  CAS  Google Scholar 

  27. Zhang J, Lei Z, Wang J, Nuli Y, Yang J (2015) Surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for Lithium-ion batteries. ACS Appl Mater Interfaces 7:15821–15829

    Article  CAS  PubMed  Google Scholar 

  28. Zheng J, Deng S, Shi Z, Xu H, Xu H, Deng Y, Zhang Z, Chen G (2013) The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. J Power Sources 221:108–113

    Article  CAS  Google Scholar 

  29. Feng X, Gao Y, Ben L, Yang Z, Wang Z, Chen L (2016) Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. J Power Sources 317:74–80

    Article  CAS  Google Scholar 

  30. Huang Z, Wang Z, Guo H, Li X (2016) Influence of Mg2+ doping on the structure and electrochemical performances of layered LiNi0.6Co0.2-xMn0.2MgxO2 cathode materials. J Alloys Compounds 671:479–485

    Article  CAS  Google Scholar 

  31. Huang B, Li X, Wang Z, Guo H, Xiong X (2014) Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceram Int 40:13223–13230

    Article  CAS  Google Scholar 

  32. Zhang Y, Li Y, Niu X, Wang D, Zhou D, Wang X, Gu C, Tu J (2015) A peanut-like hierarchical micro/nano-Li1.2Mn0.54Ni0.18Co0.08O2 cathode material for lithium-ion batteries with enhanced electrochemical performance. J Mater chem A 3:14291–14297

    Article  CAS  Google Scholar 

  33. Yu R, Wang G, Liu M, Zhang X, Wang X, Shu H, Yang X, Huang W (2016) Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping. J Power Sources 335:65–75

    Article  CAS  Google Scholar 

  34. Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q, Yang Z (2015) Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2-xMgxO2 for lithium ion batteries. RSC Adv 5:88773–88779

    Article  CAS  Google Scholar 

  35. Zhao J, Wang Z, Guo H, Li X, He Z, Li T (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41:11396–11401

    Article  CAS  Google Scholar 

  36. Zheng Z, Guo XD, Zhong YJ, Hua WB, Shen CH, Chou SL, Yang XS (2016) Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt: toward superior electrochemical performances. Electrochim Acta 188:336–343

    Article  CAS  Google Scholar 

  37. Tang T, Zhang HL (2016) Synthesis and electrochemical performance of lithium-rich cathode material Li[Li0.2Ni0.15Mn0.55Co0.1-xAlx]O2. Electrochim Acta 191:263–269

    Article  CAS  Google Scholar 

  38. Li F, Sun YY, Yao ZH, Cao JS, Wang YL, Ye SH (2015) Enhanced initial coulombic efficiency of Li1.14Ni0.16Co0.08Mn0.57O2 cathode materials with superior performance for lithium-ion batteries. Electrochim Acta 182:723–732

    Article  CAS  Google Scholar 

  39. Liu H, Qian D, Verde MG, Zhang M, Baggetto L, An K, Chen Y, Carroll KJ, Lau D, Chi M (2015) Understanding the role of NH4F and Al2O3 surface co-modification on Lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2. ACS Appl Mater Interfaces 7:19189–19200

    Article  CAS  PubMed  Google Scholar 

  40. Yu X, Lyu Y, Gu L, Wu H, Bak SM, Zhou Y, Amine K, Ehrlich SN, Li H, Nam KW (2014) Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater 4:1300950

    Article  CAS  Google Scholar 

  41. Sivaprakash S, Majumder SB (2009) Understanding the role of Zr4+ cation in improving the cycleability of LiNi0.8Co0.15Zr0.05O2 cathodes for Li ion rechargeable batteries. J Alloys Compounds 479:561–568

    Article  CAS  Google Scholar 

  42. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 6:1502398

    Article  CAS  Google Scholar 

  43. Ates MN, Jia Q, Shah A, Busnaina A, Mukerjee S, Abraham KM (2013) Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J Electrochem Soc 161:A290–A301

    Article  CAS  Google Scholar 

  44. Chao L, Hao W, Yun Z, Liu H, Chen B, Wu N, Wang S (2014) Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J Power Sources 267:682–691

    Article  CAS  Google Scholar 

  45. Yu R, Lin Y, Huang Z (2015) Investigation on the enhanced electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with ZnO. Electrochim Acta 173:515–522

    Article  CAS  Google Scholar 

  46. Ma Q, Li R, Zheng R, Liu Y, Huo H, Dai C (2016) Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J Power Sources 331:112–121

    Article  CAS  Google Scholar 

  47. Huang B, Li X, Wang Z, Guo H, Shen L, Wang J (2014) A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. J Power Sources 252:200–207

    Article  CAS  Google Scholar 

  48. Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, VanTendeloo G, Tarascon JM (2015) Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater 14:230–238

    Article  CAS  PubMed  Google Scholar 

  49. Wu F, Li Q, Bao L, Zheng Y, Lu Y, Su Y, Wang J, Chen S, Chen R, Tian J (2018) Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochim Acta 260:986–993

    Article  CAS  Google Scholar 

  50. Lee E-S, Manthiram A (2014) Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J Mater Chem A 2:3932

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51574287, 51674296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Guo.

Electronic supplementary material

ESM 1

(DTD 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Guo, H., Wang, Z. et al. Magnesium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with high rate capability and improved cyclic stability. Ionics 25, 1967–1977 (2019). https://doi.org/10.1007/s11581-018-2663-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2663-7

Keywords

Navigation