Skip to main content
Log in

Triboelectric-electromagnetic hybrid generator with swing-blade structures for effectively harvesting distributed wind energy in urban environments

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The wind energy in cities cannot be exploited effectively because natural wind is unstable and complex. Therefore, a triboelectric-electromagnetic hybrid generator with swing-blade structures (SBS-TEHG) was designed to effectively harvest intermittent and continuous wind energy in an urban environment. First, the spring structure and base were considered to realize the maximum output performance of triboelectric nanogenerators. Then, the computational fluid dynamics method was applied to optimize the structure of the SBS-TEHG to improve its aerodynamic performance. The starting wind speed of the SBS-TEHG was 2 m/s, and its energy conversion efficiency was 9.04%, 159% higher than that of the SBS-TEHG without guide plates at 4 m/s. The results demonstrated that the SBS-TEHG lit 105 light-emitting diodes (LEDs) under the intermittent-wind harvesting mode at a wind frequency of 1 Hz when the single swing blade operated, while a wireless PM2.5 & PM10 sensor was powered by the SBS-TEHG after a period of operation under the continuous-wind harvesting mode. The findings of this study provide a novel solution for low-speed wind energy harvesting in cities and demonstrate the potential of SBS-TEHG as a distributed energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

    Article  Google Scholar 

  2. Zhang, Z. H.; Jie, Y.; Zhu, J. Q.; Zhu, Z. Y.; Chen, H.; Lu, Q. X.; Zeng, Y. M.; Cao, X.; Wang, N.; Wang, Z. L. Paper triboelectric nanogenerator designed for continuous reuse and quick construction. Nano Res. 2022, 15, 1109–1114.

    Article  Google Scholar 

  3. Liu, L.; Guo, X. G.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304.

    Article  CAS  Google Scholar 

  4. Khandelwal, G.; Chandrasekhar, A.; Alluri, N. R.; Vivekananthan, V.; Maria Joseph Raj, N. P.; Kim, S. J. Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator. Appl. Energy 2018, 219, 338–349.

    Article  Google Scholar 

  5. Men, C. B.; Liu, X. P.; Chen, Y.; Liu, S. Z.; Wang, S. T.; Gao, S. Y. Cotton-assisted dual rotor-stator triboelectric nanogenerator for real-time monitoring of crop growth environment. Nano Energy 2022, 101, 107578.

    Article  CAS  Google Scholar 

  6. Mu, J. L.; Zou, J.; Song, J. S.; He, J.; Hou, X. J.; Yu, J. B.; Han, X. T.; Feng, C. P.; He, H. C.; Chou, X. J. Hybrid enhancement effect of structural and material properties of the triboelectric generator on its performance in integrated energy harvester. Energy Convers. Manage. 2022, 254, 115151.

    Article  Google Scholar 

  7. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  8. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  9. Cheng, T. H.; Gao, Q.; Wang, Z. L. The current development and future outlook of triboelectric nanogenerators: A survey of literature. Adv. Mater. Technol. 2019, 4, 1800588.

    Article  Google Scholar 

  10. Wang, Z. L. On the expanded Maxwell’s equations for moving charged media system-general theory, mathematical solutions and applications in TENG. Mater. Today 2022, 52, 348–363.

    Article  Google Scholar 

  11. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  CAS  Google Scholar 

  12. Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

    Article  CAS  Google Scholar 

  13. Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

    Article  Google Scholar 

  14. Wang, B. C.; Zhai, X. Y.; Wei, X. L.; Shi, Y. P.; Huo, X. Q.; Li, R. N.; Wu, Z. Y.; Wang, Z. L. A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems. Nano Res. 2022, 15, 8435–8441.

    Article  Google Scholar 

  15. Xu, Y. H.; Yang, W. X.; Lu, X. H.; Yang, Y. F.; Li, J. P.; Wen, J. M.; Cheng, T. H.; Wang, Z. L. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 2021, 15, 16368–16375.

    Article  CAS  Google Scholar 

  16. Gao, Q.; Xu, Y. H.; Yu, X.; Jing, Z. X.; Cheng, T. H.; Wang, Z. L. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano 2022, 16, 6781–6788.

    Article  CAS  Google Scholar 

  17. Cao, B.; Wang, P. H.; Rui, P. S.; Wei, X. X.; Wang, Z. X.; Yang, Y. W.; Tu, X. B.; Chen, C.; Wang, Z. Z.; Yang, Z. Q. et al. Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 2022, 12, 2202627.

    Article  CAS  Google Scholar 

  18. Wang, Y.; Chen, T. Y.; Sun, S. W.; Liu, X. Y.; Hu, Z. Y.; Lian, Z. H.; Liu, L.; Shi, Q. F.; Wang, H.; Mi, J. C. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 2022, 15, 3246–3253.

    Article  CAS  Google Scholar 

  19. Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.

    Article  Google Scholar 

  20. Yong, S.; Wang, H. Q.; Lin, Z. N.; Li, X. S.; Zhu, B. Y.; Yang, L. J.; Ding, W. B.; Liao, R. J.; Wang, J. Y.; Wang, Z. L. Environmental self-adaptive wind energy harvesting technology for self-powered system by triboelectric-electromagnetic hybridized nanogenerator with dual-channel power management topology. Adv. Energy Mater. 2022, 12, 2202469.

    Article  CAS  Google Scholar 

  21. Chen, H.; Lu, Q. X.; Cao, X.; Wang, N.; Wang, Z. L. Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Res. 2022, 15, 2505–2511.

    Article  CAS  Google Scholar 

  22. Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.

    Article  CAS  Google Scholar 

  23. Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.

    Article  Google Scholar 

  24. He, C.; Zhu, W. J.; Gu, G. Q.; Jiang, T.; Xu, L.; Chen, B. D.; Han, C. B.; Li, D. C.; Wang, Z. L. Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Res. 2018, 11, 1157–1164.

    Article  Google Scholar 

  25. Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226–2233.

    Article  Google Scholar 

  26. Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

    Article  CAS  Google Scholar 

  27. Luo, Y. J.; Chen, P. F.; Cao, L. N. Y.; Xu, Z. J.; Wu, Y.; He, G. F.; Jiang, T.; Wang, Z. L. Durability improvement of breeze-driven triboelectric-electromagnetic hybrid nanogenerator by a travel-controlled approach. Adv. Funct. Mater. 2022, 32, 2205710.

    Article  CAS  Google Scholar 

  28. Long, L.; Liu, W. L.; Wang, Z.; He, W. C.; Li, G.; Tang, Q.; Gao, H. Y.; Pu, X. J.; Liu, Y. K.; Hu, C. G. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 2021, 12, 4689.

    Article  CAS  Google Scholar 

  29. Gui, Y. G.; Wang, Y. F.; He, S. S.; Yang, J. C. Self-powered smart agriculture real-time sensing device based on hybrid wind energy harvesting triboelectric-electromagnetic nanogenerator. Energy Convers. Manage. 2022, 269, 116098.

    Article  CAS  Google Scholar 

  30. Xin, C. F.; Guo, H. Y.; Shen, F.; Peng, Y.; Xie, S. R.; Li, Z. J.; Zhang, Q. A hybrid generator with electromagnetic transduction for improving the power density of triboelectric nanogenerators and scavenging wind energy. Adv. Mater. Technol. 2022, 7, 2101610.

    Article  Google Scholar 

  31. Zhang, C. G.; Liu, Y. B.; Zhang, B. F.; Yang, O.; Yuan, W.; He, L. X.; Wei, X. L.; Wang, J.; Wang, Z. L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499.

    Article  CAS  Google Scholar 

  32. Elsakka, M. M.; Ingham, D. B.; Ma, L.; Pourkashanian, M. CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Convers. Manage. 2019, 182, 154–165.

    Article  Google Scholar 

  33. Sun, X. J.; Zhu, J. Y.; Li, Z. J.; Sun, G. X. Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers. Energy 2021, 215, 119177.

    Article  Google Scholar 

  34. Shukla, V.; Kaviti, A. K. Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models. Energy 2017, 126, 766–795.

    Article  Google Scholar 

  35. Dong, L.; Zhu, J. Y.; Xie, P.; Cheng, T. H. Numerical and experimental study on power extraction performance of a semi-active flapping airfoil with bioinspired dimple. Energy Rep. 2022, 8, 13753–13765.

    Article  Google Scholar 

  36. Le, T. Q.; Ko, J. H. Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations. Renewable Energy 2015, 80, 275–285.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support received from the Natural Science Foundation of Beijing Municipality (No. 3222023) and the National Natural Science Foundation of China (No. 51975429).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Lin Wang, Jianyang Zhu or Tinghai Cheng.

Electronic Supplementary Material

12274_2023_5691_MOESM1_ESM.pdf

Triboelectric-electromagnetic hybrid generator with swing-blade structures for effectively harvesting distributed wind energy in urban environments

Supplementary material, approximately 1.66 MB.

Supplementary material, approximately 8.04 MB.

Supplementary material, approximately 6.46 MB.

Supplementary material, approximately 10.1 MB.

Supplementary material, approximately 9.51 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhu, J., Zhang, Y. et al. Triboelectric-electromagnetic hybrid generator with swing-blade structures for effectively harvesting distributed wind energy in urban environments. Nano Res. 16, 11621–11629 (2023). https://doi.org/10.1007/s12274-023-5691-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5691-1

Keywords

Navigation