Skip to main content
Log in

Self-powered Internet of Things sensing node based on triboelectric nanogenerator for sustainable environmental monitoring

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The myriad sensing nodes in the Internet of Things (IoT) are mainly powered by battery, which has limited the lifespan and increased the maintenance costs. Herein, a self-powered IoT sensing node based on triboelectric nanogenerator (TENG) is proposed for the sustainable environmental monitoring. The wind powered TENG (W-TENG) is adopted in freestanding mode with the rabbit hair and six pairs of finger electrodes. With the energy management module, the weak electrical energy from W-TENG can be converted into a stable direct current (DC) 2.5 V voltage for the operation of the IoT sensing node. When the storage energy exceeds 4.4 V, the node can be activated, then the microprogrammed control unit (MCU) transmits the monitoring data. Thereafter, the monitoring data will be identified and relayed to the IoT cloud platform by narrowband IoT (NB-IoT) module. At a wind speed of 8.4 m/s, the node can realize the wireless monitoring and data transmission for temperature and atmosphere pressure every 30 s. This work has provided a universal strategy for sustainable IoT sensing nodes powered by environmental micro-nano mechanical energy and exhibited potential applications in IoT, big data, and environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Z. H.; Yue, Y. Z.; Yang, Y.; Peng, Y. F.; Wang, X. B.; Liu, W. J. Study and application on the architecture and key technologies for IOT. In Proceedings of 2011 International Conference on Multimedia Tcohoology, Hangzhou, China, 2011, pp 747–751.

  2. Shah, S. H.; Yaqoob, I. A survey: Internet of Things (IOT) technologies, applications and challenges. In Proceedings of 22J16 IEEE Smart Energy Grid Engineering, Oshawa, Canada, 2016, pp 381–385.

  3. Malche, T.; Maheshwary, P.; Kumar, R. Environmental monitoring system for smart city based on secure Internet of Things (IoT) architecture. Wireless Pers. Commun. 2019, 107, 2143–2172.

    Article  Google Scholar 

  4. Ullo, S. L.; Sinha, G. R. Advances in smart environment monitoring systems using IoT and sensors. Sensors 2020, 20, 3113.

    Article  CAS  Google Scholar 

  5. Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Ageio. 2019, 156, 467–474.

    Article  Google Scholar 

  6. Gulati, K.; Boddu, R. S. K.; Kapila, D.; Bangare, S. L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor network techniques in Internet of Things (IoT). Mater. Toda yProo. 2022, 51, 161–165.

    Article  Google Scholar 

  7. Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the energy sector. Energies 2020, 13, 494.

    Article  Google Scholar 

  8. Elahi, H.; Munir, K.; Eugeni, M.; Atek, S.; Gaudenzi, P. Energy harvesting towards self-powered IoT devices. Energees 2020, 13, 5528.

    Article  CAS  Google Scholar 

  9. Zhu, M. L.; Yi, Z. R.; Yang, B.; Lee, C. Making use of nanoenergy from human-nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016.

    Article  Google Scholar 

  10. Maharjan, P.; Bhatta, T.; Cho, H.; Hui, X.; Park, C.; Yoon, S.; Salauddin, M.; Rahman, M. T.; Rana, S. S. M.; Park, J. Y. A fully functional universal self-chargeable power module for portable/wearable electronics and self-powered IoT applications. Adv. Energy Mater. 2020, 10, 2002782.

    Article  CAS  Google Scholar 

  11. Sun, J. F.; Zhang, L. J.; Li, Z. J.; Tang, Q.; Chen, J.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y.; Wang, Z. L. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 2021, 33, 2102765.

    Article  CAS  Google Scholar 

  12. Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

    Article  CAS  Google Scholar 

  13. Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane chargeseparation mechanism. Nano Lett. 2013, 13, 2226–2233.

    Article  CAS  Google Scholar 

  14. Yang, Y.; Zhou, Y. S.; Zhang, H. L.; Liu, Y.; Lee, S.; Wang, Z. L. A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 2013, 25, 6594–6601.

    Article  CAS  Google Scholar 

  15. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  CAS  Google Scholar 

  16. Chen, C.; Wen, Z.; Wei, A. M.; Xie, X. K.; Zhai, N. N.; Wei, X. L.; Peng, M. F.; Liu, Y. N.; Sun, X. H.; Yeow, J. T. W. Self-powered online ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy 2019, 62, 442–448.

    Article  CAS  Google Scholar 

  17. Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

    Article  CAS  Google Scholar 

  18. Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

    Article  CAS  Google Scholar 

  19. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  20. Xi, F. B.; Pang, Y. K.; Liu, G. X.; Wang, S. W.; Li, W.; Zhang, C.; Wang, Z. L. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 2019, 61, 1–9.

    Article  CAS  Google Scholar 

  21. Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123.

    Article  CAS  Google Scholar 

  22. Fu, X. P.; Xu, S. H.; Gao, Y. Y.; Zhang, X. H.; Liu, G. X.; Zhou, H.; Lv, Y.; Zhang, C.; Wang, Z. L. Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification. ACS Energy Lett. 2021, 6, 2343–2350.

    Article  CAS  Google Scholar 

  23. Liu, D.; Li, C. Y.; Chen, P. F.; Zhao, X.; Tang, W.; Wang, Z. L. Sustainable long-term and wide-area environment monitoring network based on distributed self-powered wireless sensing nodes. Adv. Energy Mater. 2023, 13, 2202691.

    Article  CAS  Google Scholar 

  24. Han, J. J.; Feng, Y. W.; Chen, P. F.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z. L. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. Adv. Funct. Mater. 2022, 32, 2108580.

    Article  CAS  Google Scholar 

  25. Xu, C. Q.; Fu, X. P.; Li, C. Y.; Liu, G. X.; Gao, Y. Y.; Qi, Y. C.; Bu, T. Z.; Chen, Y. F.; Wang, Z. L.; Zhang, C. Raindrop energy-powered autonomous wireless hyetometer based on liquid-solid contact electrification. Microsyst. Nanoeng. 2022, 8, 30.

    Article  Google Scholar 

  26. Zhang, X. H.; Zhao, J. Q.; Fu, X. P.; Lin, Y.; Qi, Y. C.; Zhou, H.; Zhang, C. Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators. Nano Energy 2022, 98, 107209.

    Article  CAS  Google Scholar 

  27. Lin, Y.; Qi, Y. C.; Wang, J. Q.; Liu, G. X.; Wang, Z. Z.; Zhao, J. Q.; Lv, Y.; Zhang, Z.; Tian, N.; Wang, M. B. et al. Self-powered and autonomous vibrational wake-up system based on triboelectric nanogenerators and MEMS switch. Sensors 2022, 22, 3752.

    Article  CAS  Google Scholar 

  28. Qi, Y. C.; Liu, G. X.; Kuang, Y.; Wang, L.; Zeng, J. H.; Lin, Y.; Zhou, H.; Zhu, M. L.; Zhang, C. Frequency band broadening and charge density enhancement of a vibrational triboelectric nanogenerator with two stoppers. Nano Energy 2022, 99, 107427.

    Article  CAS  Google Scholar 

  29. Chen, X. P.; Li, J. Y.; Liu, Y. N.; Jiang, J. X.; Zhao, C.; Zhao, C. Z.; Lim, E. G.; Sun, X. H.; Wen, Z. An integrated self-powered realtime pedometer system with ultrafast response and high accuracy. ACSAppl. Mater. Interfaces 2021, 13, 61789–61798.

    Article  CAS  Google Scholar 

  30. Sun, J. F.; Zhang, L. J.; Hui, X. D.; Huang, Y. Z.; Chen, J.; Hu, C. G.; Guo, H. Y.; Qi, S.; Wang, Z. L. Self-powered in-phase sensing and regulating mechanical system enabled by nanogenerator and electrorheological fluid. Adv. Funct. Mater. 2023, 33, 2212248.

    Article  CAS  Google Scholar 

  31. Hui, X. D.; Li, Z. J.; Tang, L. R.; Sun, J. F.; Hou, X. Z.; Chen, J.; Peng, Y.; Wu, Z. Y.; Guo, H. Y. A self-powered, highly embedded and sensitive tribo-label-sensor for the fast and stable label printer. Nano-Micro Lett. 2023, 15, 27.

    Article  CAS  Google Scholar 

  32. Harmon, W.; Bamgboje, D.; Guo, H. Y.; Hu, T. S.; Wang, Z. L. Self-driven power management system for triboelectric nanogenerators. Nano Energy 2020, 71, 104642.

    Article  CAS  Google Scholar 

  33. Wang, F.; Tian, J. W.; Ding, Y. F.; Shi, Y. X.; Tao, X. L.; Wang, X. L.; Yang, Y.; Chen, X. Y.; Wang, Z. L. A universal managing circuit with stabilized voltage for maintaining safe operation of self-powered electronics system. iScience 2021, 24, 102502.

    Article  Google Scholar 

  34. Song, Y.; Min, J. H.; Yu, Y.; Wang, H. B.; Yang, Y. R.; Zhang, H. X.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842.

    Article  CAS  Google Scholar 

  35. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  Google Scholar 

  36. Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research & Development Project from Minister of Science and Technology (No. 2021YFA1201604), the National Natural Science Foundation of China (Nos. 52250112 and 51922023), and Fundamental Research Funds for the Central Universities (No. E1EG6804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Electronic Supplementary Material

12274_2023_5689_MOESM1_ESM.pdf

Self-powered Internet of Things sensing node based on triboelectric nanogenerator for sustainable environmental monitoring

Supplementary material, approximately 3.44 MB.

Supplementary material, approximately 1.34 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Fu, X., Lin, Y. et al. Self-powered Internet of Things sensing node based on triboelectric nanogenerator for sustainable environmental monitoring. Nano Res. 16, 11878–11884 (2023). https://doi.org/10.1007/s12274-023-5689-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5689-8

Keywords

Navigation