Skip to main content

Triboelectric Nanogenerators as Sensing for Smart Home

  • Living reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 121 Accesses

Abstract

Smart home is one of the important components of future intelligent living systems, which involves automatic controlling, Internet of Things, artificial intelligences, and other technologies. So far, the development of smart homes has gone through several stages from the initial electrical age, to telephone communication, to the Internet, to the current Internet of things, and to future full artificial intelligence, mainly to maximize the personalized needs of home users. In order to realize the continuous, stable, and reliable operation of the smart home system, a new type of power supply and interactive intelligent sensor networks are needed. Considering that, traditional sensors require frequent charging, which is not conducive to long-term use and environmental protection, a sustainable and maintenance-free sensing strategy is also required. As a newly developed energy harvesting technology, triboelectric nanogenerator (TENG) can power numerous low-power wearable electronics by converting mechanical energy into electrical energy through the coupling effect of contact electrification and electrostatic induction. In addition, it can also directly convert mechanical stimuli into electrical signals to operate as self-powered sensors. Herein, the 10 aspects of TENG in smart home are mainly introduced, including smart roof, smart floor, smart bed, smart carpet, smart toilet, smart lock, smart pillow, smart disinfection system, smart footwear system, and smart greenhouse system. It demonstrates the wide application of TENG as self-powered sensors in smart home, which can flexibly sense pressure, tactile, and other signals; collect user information and analyze them; and has great potential in home medical care, security protection, and accident warning. Smart home allows users to have greater inclusiveness and control over their living environment, and multiple forms of intelligent operating terminals give users more room for choice. In the future, smart home will tend to be more intelligent and life-like, and it needs to use machine-learning technology to design smart home system with evolutionary function and autonomous control, and provide housekeeping type service to users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Chen J, Huang Y, Zhang N, Zou H, Liu R, Tao C, Fan X, Wang ZL (2016) Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energ 1:1

    Article  CAS  Google Scholar 

  • Chen J, Pu X, Guo H, Tang Q, Feng L, Wang X, Hu C (2018) A self-powered 2D barcode recognition system based on sliding mode triboelectric nanogenerator for personal identification. Nano Energy 43:253

    Article  CAS  Google Scholar 

  • Cheng R, Dong K, Chen P, Ning C, Peng X, Zhang Y, Liu D, Wang ZL (2021) High output direct-current power fabrics based on the air breakdown effect. Energy Environ Sci 14:2460

    Article  CAS  Google Scholar 

  • Choi HW, Shin DW, Yang J, Lee S, Figueiredo C, Sinopoli S, Ullrich K, Jovancic P, Marrani A, Momente R, Gomes J, Branquinho R, Emanuele U, Lee H, Bang SY, Jung SM, Han SD, Zhan S, Harden-Chaters W, Suh YH, Fan XB, Lee TH, Chowdhury M, Choi Y, Nicotera S, Torchia A, Moncunill FM, Candel VG, Duraes N, Chang K, Cho S, Kim CH, Lucassen M, Nejim A, Jimenez D, Springer M, Lee YW, Cha S, Sohn JI, Igreja R, Song K, Barquinha P, Martins R, Amaratunga GAJ, Occhipinti LG, Chhowalla M, Kim JM (2022) Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat Commun 13:814

    Article  CAS  Google Scholar 

  • Ding X, Cao H, Zhang X, Li M, Liu Y (2018) Large scale triboelectric nanogenerator and self-powered flexible sensor for human sleep monitoring. Sensors (Basel) 18:1713

    Article  Google Scholar 

  • Dong K, Wang Z (2021) Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J Semicond 38:105009

    Google Scholar 

  • Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang ZL (2017a) 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 29:1702648

    Article  Google Scholar 

  • Dong K, Wang YC, Deng J, Dai Y, Zhang SL, Zou H, Gu B, Sun B, Wang ZL (2017b) A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11:9490

    Article  CAS  Google Scholar 

  • Dong K, Wu Z, Deng J, Wang AC, Zou H, Chen C, Hu D, Gu B, Sun B, Wang ZL (2018) A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 30:e1804944

    Article  Google Scholar 

  • Dong K, Peng X, An J, Wang AC, Luo J, Sun B, Wang J, Wang ZL (2020a) Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun 11:1

    Article  CAS  Google Scholar 

  • Dong K, Peng X, Wang ZL (2020b) Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 32:e1902549

    Article  Google Scholar 

  • Dong K, Hu Y, Yang J, Kim S-W, Hu W, Wang ZL (2021) Smart textile triboelectric nanogenerators: current status and perspectives. MRS Bull 46:512

    Article  CAS  Google Scholar 

  • Dong K, Peng X, Cheng R, Wang ZL (2022a) Smart textile triboelectric nanogenerators: prospective strategies for improving electricity output performance. Nanoenerg Adv 2:133

    Article  Google Scholar 

  • Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL (2022b) Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv Mater 34:e2109355

    Article  Google Scholar 

  • Fan F-R, Tian Z-Q, Lin Wang Z (2012) Flexible triboelectric generator. Nano Energy 1:328

    Article  CAS  Google Scholar 

  • Fang Y, Zou Y, Xu J, Chen G, Zhou Y, Deng W, Zhao X, Roustaei M, Hsiai TK, Chen J (2021) Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv Mater 33:e2104178

    Article  Google Scholar 

  • Gu L, German L, Li T, Li J, Shao Y, Long Y, Wang J, Wang X (2021) Energy harvesting floor from commercial cellulosic materials for a self-powered wireless transmission sensor system. ACS Appl Mater Interfaces 13:5133

    Article  CAS  Google Scholar 

  • Hao S, Jiao J, Chen Y, Wang ZL, Cao X (2020) Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors. Nano Energy 75:104957

    Article  CAS  Google Scholar 

  • He C, Zhu W, Chen B, Xu L, Jiang T, Han CB, Gu GQ, Li D, Wang ZL (2017) Smart floor with integrated triboelectric nanogenerator as energy harvester and motion sensor. ACS Appl Mater Interfaces 9:26126

    Article  CAS  Google Scholar 

  • Huo ZY, Kim YJ, Suh IY, Lee DM, Lee JH, Du Y, Wang S, Yoon HJ, Kim SW (2021) Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nat Commun 12:1

    Article  Google Scholar 

  • Huo ZY, Lee DM, Jeong JM, Kim YJ, Kim J, Suh IY, Xiong P, Kim SW (2022) Microbial disinfection with supercoiling capacitive triboelectric nanogenerator. Adv Energy Mater 12:2103680

    Article  CAS  Google Scholar 

  • Jeon S-B, Nho Y-H, Park S-J, Kim W-G, Tcho I-W, Kim D, Kwon D-S, Choi Y-K (2017) Self-powered fall detection system using pressure sensing triboelectric nanogenerators. Nano Energy 41:139

    Article  CAS  Google Scholar 

  • Jiang Y, Dong K, Li X, An J, Wu D, Peng X, Yi J, Ning C, Cheng R, Yu P, Wang ZL (2020) Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv Funct Mater 31:2005584

    Article  Google Scholar 

  • Jiang Y, Dong K, An J, Liang F, Yi J, Peng X, Ning C, Ye C, Wang ZL (2021) UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl Mater Interfaces 13:11205

    Article  CAS  Google Scholar 

  • Jiang Y, An J, Liang F, Zuo G, Yi J, Ning C, Zhang H, Dong K, Wang ZL (2022a) Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Res 15:8389–8397

    Article  Google Scholar 

  • Jiang C, Lai CL, Xu B, So MY, Li Z (2022b) Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions. Nano Energy 93:106807

    Article  CAS  Google Scholar 

  • Jintanawan T, Phanomchoeng G, Suwankawin S, Kreepoke P, Chetchatree P, U-viengchai C (2020) Design of kinetic-energy harvesting floors. Energies 13:5419

    Article  Google Scholar 

  • Kou H, Wang H, Cheng R, Liao Y, Shi X, Luo J, Li D, Wang ZL (2022) Smart pillow based on flexible and breathable triboelectric nanogenerator arrays for head movement monitoring during sleep. ACS Appl Mater Interfaces 14(20):23998–24007

    Google Scholar 

  • Lai Y-C, Deng J, Zhang SL, Niu S, Guo H, Wang ZL (2017) Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater 27:1604462

    Article  Google Scholar 

  • Lai Y-C, Hsiao Y-C, Wu H-M, Wang ZL (2019) Waterproof fabric-based multifunctional triboelectric Nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv Sci 6:1801883

    Article  Google Scholar 

  • Li S, Chiu C (2018) A smart pillow for health sensing system based on temperature and humidity sensors. Sensors (Basel) 18:3664

    Article  Google Scholar 

  • Li Y, Zhang Y, Yi J, Peng X, Cheng R, Ning C, Sheng F, Wang S, Dong K, Wang ZL (2022) Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat 4(4):e12191

    Google Scholar 

  • Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, Chen J, Yang J (2018) Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater 28:1704112

    Article  Google Scholar 

  • Liu H, Guo ZH, Xu F, Jia L, Pan C, Wang ZL, Pu X (2021) Triboelectric-optical responsive cholesteric liquid crystals for self-powered smart window, E-paper display and optical switch. Sci Bull 1986:66

    Google Scholar 

  • Liu D, Zhang D, Sun Z, Zhou S, Li W, Li C, Li W, Tang W, Wang ZL (2022) Active-matrix sensing array assisted with machine-learning approach for lumbar degenerative disease diagnosis and postoperative assessment. Adv Funct Mater 32:2113008

    Article  CAS  Google Scholar 

  • Luo J, Han K, Wu X, Cai H, Jiang T, Zhou H, Wang ZL (2021) Self-powered mobile sterilization and infection control system. Nano Energy 88:106313

    Article  CAS  Google Scholar 

  • Ma L, Wu R, Liu S, Patil A, Gong H, Yi J, Sheng F, Zhang Y, Wang J, Wang J, Guo W, Wang ZL (2020) A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv Mater 32:e2003897

    Article  Google Scholar 

  • Ma L, Wu R, Patil A, Yi J, Liu D, Fan X, Sheng F, Zhang Y, Liu S, Shen S, Wang J, Wang ZL (2021) Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv Funct Mater 31:2102963

    Article  CAS  Google Scholar 

  • Marx V (2013) The big challenges of big data. Nature 498:255

    Article  CAS  Google Scholar 

  • Nie B, Huang R, Yao T, Zhang Y, Miao Y, Liu C, Liu J, Chen X (2019) Textile-based wireless pressure sensor array for human-interactive sensing. Adv Funct Mater 29:1808786

    Article  Google Scholar 

  • Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Jiang Y, Wang ZL (2020) Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv Funct Mater 31:2006679

    Article  Google Scholar 

  • Ning C, Dong K, Gao W, Sheng F, Cheng R, Jiang Y, Yi J, Ye C, Peng X, Wang ZL (2021) Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chem Eng J 420:129650

    Article  CAS  Google Scholar 

  • Ning C, Cheng R, Jiang Y, Sheng F, Yi J, Shen S, Zhang Y, Peng X, Dong K, Wang ZL (2022) Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 16:2811

    Article  CAS  Google Scholar 

  • Park SM, Won DD, Lee BJ, Escobedo D, Esteva A, Aalipour A, Ge TJ, Kim JH, Suh S, Choi EH, Lozano AX, Yao C, Bodapati S, Achterberg FB, Kim J, Park H, Choi Y, Kim WJ, Yu JH, Bhatt AM, Lee JK, Spitler R, Wang SX, Gambhir SS (2020) A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat Biomed Eng 4:624

    Article  Google Scholar 

  • Peng X, Dong K, Ye C, Jiang Y, Zhai S, Cheng R, Liu D, Gao X, Wang J, Lin WZ (2020) A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 6:eaba9624

    Article  CAS  Google Scholar 

  • Peng X, Dong K, Ning C, Cheng R, Yi J, Zhang Y, Sheng F, Wu Z, Wang ZL (2021a) All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv Funct Mater 31:2103559

    Article  CAS  Google Scholar 

  • Peng X, Dong K, Wu Z, Wang J, Wang ZL (2021b) A review on emerging biodegradable polymers for environmentally benign transient electronic skins. J Mater Sci 56:16765

    Article  CAS  Google Scholar 

  • Peng X, Dong K, Zhang Y, Wang L, Wei C, Lv T, Wang ZL, Wu Z (2022) Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. Adv Funct Mater 32:2112241

    Article  CAS  Google Scholar 

  • Puscasu O, Counsell N, Herfatmanesh MR, Peace R, Patsavellas J, Day R (2018) Powering lights with piezoelectric energy-harvesting floors. Energ Technol 6:906

    Article  Google Scholar 

  • Qiu C, Wu F, Lee C, Yuce MR (2020) Self-powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy 70:104456

    Article  CAS  Google Scholar 

  • Rana SMS, Rahman MT, Sharma S, Salauddin M, Yoon SH, Park C, Maharjan P, Bhatta T, Park JY (2021a) Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors. Nano Energy 88:106300

    Article  CAS  Google Scholar 

  • Rana SMS, Rahman MT, Salauddin M, Sharma S, Maharjan P, Bhatta T, Cho H, Park C, Park JY (2021b) Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl Mater Interfaces 13:4955

    Article  CAS  Google Scholar 

  • Shen S, Yi J, Cheng R, Ma L, Sheng F, Li H, Zhang Y, Ning C, Wang H, Dong K, Wang ZL (2021) Electromagnetic shielding triboelectric yarns for human–machine interacting. Adv Electron Mater 8:2101130

    Article  Google Scholar 

  • Sheng F, Yi J, Shen S, Cheng R, Ning C, Ma L, Peng X, Deng W, Dong K, Wang ZL (2021) Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS Appl Mater Interfaces 13:44868

    Article  CAS  Google Scholar 

  • Shi Q, Zhang Z, He T, Sun Z, Wang B, Feng Y, Shan X, Salam B, Lee C (2020) Deep learning enabled smart mats as a scalable floor monitoring system. Nat Commun 11:4609

    Article  CAS  Google Scholar 

  • Shi Q, Zhang Z, Yang Y, Shan X, Salam B, Lee C (2021) Artificial intelligence of things (AIoT) enabled floor monitoring system for smart home applications. ACS Nano 15:18312

    Article  CAS  Google Scholar 

  • Shi X, Luo J, Luo J, Li X, Han K, Li D, Cao X, Wang ZL (2022) Flexible wood-based triboelectric self-powered smart home system. ACS Nano 16:3341

    Article  CAS  Google Scholar 

  • Song W, Gan B, Jiang T, Zhang Y, Yu A, Yuan H, Chen N, Sun C, Wang ZL (2016) Nanopillar arrayed triboelectric Nanogenerator as a self-powered sensitive sensor for a sleep monitoring system. ACS Nano 10:8097

    Article  CAS  Google Scholar 

  • Sun J, Tu K, Büchele S, Koch SM, Ding Y, Ramakrishna SN, Stucki S, Guo H, Wu C, Keplinger T, Pérez-Ramírez J, Burgert I, Panzarasa G (2021) Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter 4:3049

    Article  CAS  Google Scholar 

  • Tian J, Feng H, Yan L, Yu M, Ouyang H, Li H, Jiang W, Jin Y, Zhu G, Li Z, Wang ZL (2017) A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy 36:241

    Article  CAS  Google Scholar 

  • Tian M, Lu Y, Qu L, Zhu S, Zhang X, Chen S (2019) A pillow-shaped 3D hierarchical piezoresistive pressure sensor based on conductive silver components-coated fabric and random fibers assembly. Ind Eng Chem Res 58:5737

    Article  CAS  Google Scholar 

  • Wang ZL (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss 176:447

    Article  CAS  Google Scholar 

  • Wang ZL (2019) Entropy theory of distributed energy for internet of things. Nano Energy 58:669

    Article  CAS  Google Scholar 

  • Wang ZL, Wang AC (2019) On the origin of contact-electrification. Mater Today 30:34

    Article  Google Scholar 

  • Wang H, Wang J, Xia X, Guan D, Zi Y (2020) Multifunctional self-powered switch toward delay-characteristic sensors. ACS Appl Mater Interfaces 12:22873

    Article  CAS  Google Scholar 

  • Wang H, Zhang M, Yang Z, Wang Z, Liu X, Lu Y, Ji L, Wang ZL, Cheng J (2021) Energy from greenhouse plastic films. Nano Energy 89:106328

    Article  CAS  Google Scholar 

  • Wilfried H, Haight R, Friedman D (2016) Solar-powering the internet of things. Science 353:124

    Article  Google Scholar 

  • Xu C, Fu X, Li C, Liu G, Gao Y, Qi Y, Bu T, Chen Y, Wang ZL, Zhang C (2022) Raindrop energy-powered autonomous wireless hyetometer based on liquid-solid contact electrification. Microsyst Nanoeng 8:1

    Article  CAS  Google Scholar 

  • Yang D, Ni Y, Su H, Shi Y, Liu Q, Chen X, He D (2021a) Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy 79:105394

    Article  CAS  Google Scholar 

  • Yang W, Gong W, Gu W, Liu Z, Hou C, Li Y, Zhang Q, Wang H (2021b) Self-powered interactive fiber electronics with visual–digital synergies. Adv Mater n/a:2104681

    Article  Google Scholar 

  • Ye C, Dong K, An J, Yi J, Peng X, Ning C, Wang ZL (2021a) A triboelectric-electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor. ACS Energ Lett 6:1443

    Article  CAS  Google Scholar 

  • Ye C, Liu D, Peng X, Jiang Y, Cheng R, Ning C, Sheng F, Zhang Y, Dong K, Wang ZL (2021b) A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Nano 15:18172

    Article  CAS  Google Scholar 

  • Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S (2022) Electroassisted core-spun triboelectric nanogenerator fabrics for intelliSense and artificial intelligence perception. ACS Nano 16:4415

    Article  CAS  Google Scholar 

  • Yi J, Dong K, Shen S, Jiang Y, Peng X, Ye C, Wang ZL (2021) Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nanomicro Lett 13:1

    Google Scholar 

  • Yu A, Wang W, Li Z, Liu X, Zhang Y, Zhai J (2020) Large-scale smart carpet for self-powered fall detection. Adv Mater Technol 5:1900978

    Article  CAS  Google Scholar 

  • Zeng X, Wang G, Liu Y, Zhang X (2017) Graphene-based antimicrobial nanomaterials: rational design and applications for water disinfection and microbial control. Environ Sci Nano 4:2248

    Article  CAS  Google Scholar 

  • Zeng Y, Luo Y, Lu Y, Cao X (2022) Self-powered rain droplet sensor based on a liquid-solid triboelectric nanogenerator. Nano Energy 98:107316

    Article  CAS  Google Scholar 

  • Zhang L, Zhang B, Chen J, Jin L, Deng W, Tang J, Zhang H, Pan H, Zhu M, Yang W, Wang ZL (2016) Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv Mater 28:1650

    Article  CAS  Google Scholar 

  • Zhang N, Huang F, Zhao S, Lv X, Zhou Y, Xiang S, Xu S, Li Y, Chen G, Tao C, Nie Y, Chen J, Fan X (2020a) Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2:1260

    Article  Google Scholar 

  • Zhang N, Li Y, Xiang S, Guo W, Zhang H, Tao C, Yang S, Fan X (2020b) Imperceptible sleep monitoring bedding for remote sleep healthcare and early disease diagnosis. Nano Energy 72:104664

    Article  CAS  Google Scholar 

  • Zhang J, Sun Y, Yang J, Jiang T, Tang W, Chen B, Wang ZL (2021a) Irregular wind energy harvesting by a turbine vent triboelectric nanogenerator and its application in a self-powered on-site industrial monitoring system. ACS Appl Mater Interfaces 13:55136

    Article  CAS  Google Scholar 

  • Zhang Z, Shi Q, He T, Guo X, Dong B, Lee J, Lee C (2021b) Artificial intelligence of toilet (AI-toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor. Nano Energy 90:106517

    Article  CAS  Google Scholar 

  • Zhang Q, Jiang C, Li X, Dai S, Ying Y, Ping J (2021c) Highly efficient raindrop energy-based triboelectric nanogenerator for self-powered intelligent greenhouse. ACS Nano 15:12314

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Cheng R, Shen S, Yi J, Peng X, Ning C, Dong K, Wang ZL (2022) Underwater monitoring networks based on cable-structured triboelectric nanogenerators. Res (Wash D C) 2022:9809406

    Google Scholar 

  • Zheng L, Cheng G, Chen J, Lin L, Wang J, Liu Y, Li H, Wang ZL (2015) A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock. Adv Energy Mater 5:1501152

    Article  Google Scholar 

  • Zhou Z, Padgett S, Cai Z, Conta G, Wu Y, He Q, Zhang S, Sun C, Liu J, Fan E, Meng K, Lin Z, Uy C, Yang J, Chen J (2020) Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron 155:112064

    Article  CAS  Google Scholar 

  • Zhu M, Shi Q, He T, Yi Z, Ma Y, Yang B, Chen T, Lee C (2019) Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 1940:13

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support received from National Natural Science Foundation of China (Grant No. 22109012), Natural Science Foundation of the Beijing Municipality (Grant No. 2212052), and the Fundamental Research Funds for the Central Universities (Grant No. E1E46805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Dong .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dong, K. (2023). Triboelectric Nanogenerators as Sensing for Smart Home. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-05722-9_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05722-9_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05722-9

  • Online ISBN: 978-3-031-05722-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics