Skip to main content
Log in

Low-frequency blue energy harvesting for sustainable and active anticorrosion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Engineering materials serving in marine surroundings are inevitably corroded. The corrosive marine conditions can also be utilized to harvest kinetic ocean wave energy to solve this problem. Leveraging water-solid triboelectrification to harvest low-frequency wave energy for active anticorrosion is promising. Existing techniques are efficient in harnessing environmental energy with frequencies higher than 3 Hz, whereas the dominated ocean waves with optimal wave spectral density fluctuate from 0.45 to 1.5 Hz. Herein, we proposed a highly efficient and sustainable blue energy-powered cathodic protection (BECP) strategy by fusing water-solid triboelectric nanogenerators and cathodic protection technology. Leveraging the highly efficient triboelectrification between the moving water and hydrophobic fluorinated ethylene propylene tube, we developed the built-in power module, enabling the harvest of ocean wave energy lower than 1.5 Hz. The generated volumetric current density is 28.9 mA·m−3, 5–20 times higher than the values of the reported devices. Moreover, the proposed BECP performs comparably to conventional cathodic protection in corrosion inhibition. Significantly, the proposed approach can be easily applied to ships, buoys, and other offshore platforms to simultaneously realize blue energy harvesting and engineering material protection, providing an alternative to traditional active protection technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitus, S., Boyer, T. P. World Ocean Atlas 1994, Vol. 4, Temperature, NOAA; U. S. Department of Commerce: Washington, 1994.

    Google Scholar 

  2. Sabel, C. F.; Victor, D. G. Governing global problems under uncertainty: Making bottom-up climate policy work. Clim. Change 2017, 144, 15–27.

    Article  Google Scholar 

  3. Xia, D. H.; Deng, C. M.; Macdonald, D.; Jamali, S.; Mills, D.; Luo, J. L.; Strebl, M. G.; Amiri, M.; Jin, W. X.; Song, S. Z. et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review. J. Mater. Sci. Technol. 2022, 112, 151–183.

    Article  CAS  Google Scholar 

  4. Li, H. G.; Zhang, Y. B.; Li, C. H.; Zhou, Z. M.; Nie, X. L.; Chen, Y.; Cao, H. J.; Liu, B.; Zhang, N. Q.; Said, Z. et al. Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications. Korean J. Chem. Eng. 2022, 39, 1107–1134.

    Article  CAS  Google Scholar 

  5. Edalati, K.; Bachmaier, A.; Beloshenko, V. A.; Beygelzimer, Y.; Blank, V. D.; Botta, W. J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N. A. et al. Nanomaterials by severe plastic deformation: Review of historical developments and recent advances. Mater. Res. Lett. 2022, 10, 163–256.

    Article  CAS  Google Scholar 

  6. Cao, Y. H.; Zheng, D. J.; Zhang, F.; Pan, J. S.; Lin, C. J. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review. J. Mater. Sci. Technol. 2022, 102, 232–263.

    Article  CAS  Google Scholar 

  7. Berdimurodov, E.; Verma, D. K.; Kholikov, A.; Akbarov, K.; Guo, L. The recent development of carbon dots as powerful green corrosion inhibitors: A prospective review. J. Mol. Liq. 2022, 349, 118124.

    Article  CAS  Google Scholar 

  8. Wang, Y. C.; Liu, B. Y.; Zhao, X. A.; Zhang, X. H.; Miao, Y. C.; Yang, N.; Yang, B.; Zhang, L. Q.; Kuang, W. J.; Li, J. et al. Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2. Nat. Commun. 2018, 9, 4058.

    Article  Google Scholar 

  9. Cui, M. M.; Wang, P. Y.; Wang, Z. K.; Wang, B. Mangrove inspired anti-corrosion coatings. Coatings 2019, 9, 725.

    Article  CAS  Google Scholar 

  10. Cui, M. M.; Wang, Z. K.; Wang, B. Survival strategies of mangrove (Ceriops tagal (perr.) C. B. Rob) and the inspired corrosion inhibitor. Front. Mater. 2022, 9, 879525.

    Article  Google Scholar 

  11. Raja, P. B.; Sethuraman, M. G. Natural products as corrosion inhibitor for metals in corrosive media—A review. Mater. Lett. 2008, 62, 113–116.

    Article  CAS  Google Scholar 

  12. Cui, M. M.; Njoku, D. I.; Li, B. W.; Yang, L. H.; Wang, Z. K.; Hou, B. R.; Li, Y. Corrosion protection of aluminium alloy 2024 through an epoxy coating embedded with smart microcapsules: The responses of smart microcapsules to corrosive entities. Corros. Commun. 2021, 1, 1–9.

    Article  Google Scholar 

  13. Njoku, D. I.; Cui, M. M.; Xiao, H. G.; Shang, B. H.; Li, Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Sci. Rep. 2017, 7, 15597.

    Article  Google Scholar 

  14. Cao, X.; Jie, Y.; Wang, N.; Wang, Z. L. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 2016, 6, 1600665.

    Article  Google Scholar 

  15. Guo, W. X.; Li, X. Y.; Chen, M. X.; Xu, L.; Dong, L.; Cao, X.; Tang, W.; Zhu, J.; Lin, C. J.; Pan, C. F. et al. Electrochemical cathodic protection powered by triboelectric nanogenerator. Adv. Funct. Mater. 2014, 24, 6691–6699.

    Article  CAS  Google Scholar 

  16. Zhu, P. H.; Ullah, Z.; Zheng, S. R.; Yang, Z. R.; Yu, S. W.; Zhu, S. P.; Liu, L. W.; He, A. H.; Wang, C. G.; Li, Q. Ultrahigh current output from triboelectric nanogenerators based on UIO-66 materials for electrochemical cathodic protection. Nano Energy 2023, 108, 108195.

    Article  CAS  Google Scholar 

  17. Xu, C. G.; Liu, Y.; Liu, Y. P.; Zheng, Y. B.; Feng, Y. G.; Wang, B. Q.; Kong, X.; Zhang, X. L.; Wang, D. A. New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting. Appl. Mater. Today 2020, 20, 100645.

    Article  Google Scholar 

  18. Zhang, X. L.; Zheng, Y. B.; Wang, D. A.; Rahman, Z. U.; Zhou, F. Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water. Nano Energy 2016, 30, 321–329.

    Article  CAS  Google Scholar 

  19. Sun, W. X.; Zheng, Y. B.; Li, T. H.; Feng, M.; Cui, S. W.; Liu, Y. P.; Chen, S. G.; Wang, D. A. Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 2021, 217, 119388.

    Article  CAS  Google Scholar 

  20. Jeon, S. B.; Kim, D.; Seol, M. L.; Park, S. J.; Choi, Y. K. 3-Dimensional broadband energy harvester based on internal hydrodynamic oscillation with a package structure. Nano Energy 2015, 17, 82–90.

    Article  CAS  Google Scholar 

  21. Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 2018, 11, 1873–1882.

    Article  CAS  Google Scholar 

  22. Cui, S. W.; Wang, J. P.; Mi, L. W.; Chen, K. Y.; Ai, W. Y.; Zhai, L. P.; Guan, X. Y.; Zheng, Y. B.; Wang, D. A. A new synergetic system based on triboelectric nanogenerator and corrosion inhibitor for enhanced anticorrosion performance. Nano Energy 2022, 91, 106696.

    Article  CAS  Google Scholar 

  23. Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem. Sci. 2016, 7, 6477–6483.

    Article  CAS  Google Scholar 

  24. Feng, Y. G.; Zheng, Y. B.; Rahman, Z. U.; Wang, D. A.; Zhou, F.; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022–18030.

    Article  CAS  Google Scholar 

  25. Liu, Y. P.; Sun, W. X.; Li, T. H.; Wang, D. A. Hydrophobic MAO/FSG coating based TENG for self-healable energy harvesting and self-powered cathodic protection. Sci. China: Technol. Sci. 2022, 65, 726–734.

    Article  CAS  Google Scholar 

  26. Sun, W. X.; Wang, N. N.; Li, J. R.; Xu, S. W.; Song, L.; Liu, Y. P.; Wang, D. A. Humidity-resistant triboelectric nanogenerator and its applications in wind energy harvesting and self-powered cathodic protection. Electrochim. Acta 2021, 391, 138994.

    Article  CAS  Google Scholar 

  27. Han, J. J.; Liu, Y.; Feng, Y. W.; Jiang, T.; Wang, Z. L. Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 2023, 13, 2203219.

    Article  CAS  Google Scholar 

  28. Liu, Y. P.; Sun, G. Y.; Liu, Y.; Sun, W. X.; Wang, D. A. Hydrophobic organic coating based water-solid TENG for water-flow energy collection and self-powered cathodic protection. Front. Mater. Sci. 2021, 15, 601–610.

    Article  Google Scholar 

  29. Zhong, Y. M.; Guo, Y. C.; Wei, X. X.; Rui, P. S.; Du, H. J.; Wang, P. H. Multi-cylinder-based hybridized electromagnetic-triboelectric nanogenerator harvesting multiple fluid energy for self-powered pipeline leakage monitoring and anticorrosion protection. Nano Energy 2021, 89, 106467.

    Article  CAS  Google Scholar 

  30. Feng, Y. W.; Han, J. J.; Xu, M. J.; Liang, X.; Jiang, T.; Li, H. X.; Wang, Z. L. Blue energy for green hydrogen fuel: A self-powered electrochemical conversion system driven by triboelectric nanogenerators. Adv. Energy Mater. 2022, 12, 2103143.

    Article  CAS  Google Scholar 

  31. Cao, B.; Wang, P. H.; Rui, P. S.; Wei, X. X.; Wang, Z. X.; Yang, Y. W.; Tu, X. B.; Chen, C.; Wang, Z. Z.; Yang, Z. Q. et al. Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 2022, 12, 2202627.

    Article  CAS  Google Scholar 

  32. Zhang, X. M.; Yang, Q. X.; Ji, P. Y.; Wu, Z. F.; Li, Q. Y.; Yang, H. K.; Li, X. C.; Zheng, G. C.; Xi, Y.; Wang, Z. L. Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 2022, 99, 107362.

    Article  CAS  Google Scholar 

  33. Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.

    Article  CAS  Google Scholar 

  34. Wang, H. Y.; Zhu, Q. Y.; Ding, Z. Y.; Li, Z. L.; Zheng, H. W.; Fu, J. J.; Diao, C. L.; Zhang, X. N.; Tian, J. J.; Zi, Y. L. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 2019, 57, 616–624.

    Article  CAS  Google Scholar 

  35. Feng, Y. W.; Jiang, T.; Liang, X.; An, J.; Wang, Z. L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401.

    Article  CAS  Google Scholar 

  36. Zhu, H. R.; Tang, W.; Gao, C. Z.; Han, Y.; Li, T.; Cao, X.; Wang, Z. L. Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy 2015, 14, 193–200.

    Article  CAS  Google Scholar 

  37. Wu, H.; Mendel, N.; Van Den Ende, D.; Zhou, G. F.; Mugele, F. Energy harvesting from drops impacting onto charged surfaces. Phys. Rev. Lett. 2020, 125, 078301.

    Article  CAS  Google Scholar 

  38. Wang, L. L.; Song, Y. X.; Xu, W. H.; Li, W. B.; Jin, Y. K.; Gao, S. W.; Yang, S. Y.; Wu, C. Y.; Wang, S.; Wang, Z. K. Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator. EcoMat 2021, 3, e12116.

    Article  CAS  Google Scholar 

  39. Wei, X. L.; Zhao, Z. H.; Zhang, C. G.; Yuan, W.; Wu, Z. Y.; Wang, J.; Wang, Z. L. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 2021, 15, 13200–13208.

    Article  CAS  Google Scholar 

  40. Wang, Y.; Gao, S. W.; Xu, W. H.; Wang, Z. K. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Adv. Funct. Mater. 2020, 30, 1908252.

    Article  CAS  Google Scholar 

  41. Zhang, N.; Zhang, H. M.; Xu, W. H.; Gu, H. J.; Ye, S. M.; Zheng, H. X.; Song, Y. X.; Wang, Z. K.; Zhou, X. F. A droplet-based electricity generator with ultrahigh instantaneous output and short charging time. Droplet 2022, 1, 56–64.

    Article  Google Scholar 

  42. Jin, Y. K.; Wu, C. Y.; Sun, P. C.; Wang, M. M.; Cui, M. M.; Zhang, C.; Wang, Z. K. Electrification of water: From basics to applications. Droplet 2022, 1, 92–109.

    Article  Google Scholar 

  43. Toffoli, A.; Bitner-Gregersen, E. M. Types of ocean surface waves, wave classification. In Encyclopedia of Maritime and Offshore Engineering. Carlton, J.; Jukes, P.; Choo, Y. S., Eds.; John Wiley & Sons: New York, 2017; pp 1–8.

    Google Scholar 

  44. Lee, U. J.; Jeong, W. M.; Cho, H. Y. Estimation and analysis of JONSWAP spectrum parameter using observed data around Korean coast. J. Mar. Sci. Eng. 2022, 10, 578.

    Article  Google Scholar 

  45. Jiang, D. Y.; Xu, M. Y.; Dong, M.; Guo, F.; Liu, X. H.; Chen, G. J.; Wang, Z. L. Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renewable Sustainable Energy Rev. 2019, 115, 109366.

    Article  Google Scholar 

  46. Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

    Article  CAS  Google Scholar 

  47. Xu, W. H.; Song, Y. X.; Xu, R. X.; Wang, Z. K. Electrohydrodynamic and hydroelectric effects at the water-solid interface: From fundamentals to applications. Adv. Mater. Interfaces 2021, 8, 2000670.

    Article  Google Scholar 

  48. Basset, P.; Beeby, S. P.; Bowen, C.; Chew, Z. J.; Delbani, A.; Dharmasena, R. D. I. G.; Dudem, B.; Fan, F. R.; Galayko, D.; Guo, H. Y. et al. Roadmap on nanogenerators and piezotronics. APL Mater. 2022, 10, 109201.

    Article  CAS  Google Scholar 

  49. Zheng, H. X.; Wu, H.; Yi, Z. R.; Song, Y. X.; Xu, W. H.; Yan, X. T.; Zhou, X. F.; Wang, S.; Wang, Z. K. Remote-controlled droplet chains-based electricity generators. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202203825.

  50. Zhao, X. J.; Kuang, S. Y.; Wang, Z. L.; Zhu, G. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 2018, 12, 4280–4285.

    Article  CAS  Google Scholar 

  51. Zhang, N.; Gu, H. J.; Zheng, H. X.; Ye, S. M.; Kang, L.; Huang, C.; Lu, K. Y.; Xu, W. H.; Miao, Q. Q.; Wang, Z. K. et al. Boosting the output performance of volume effect electricity generator (VEEG) with water column. Nano Energy 2020, 73, 104748.

    Article  CAS  Google Scholar 

  52. Von Baeckmann, W.; Schwenk, W.; Prinz, W. Handbook of Cathodic Corrosion Protection; Gulf Professional Publishing: Houston, 1997.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51975502), the Research Grants Council of Hong Kong (Nos. SRFS2223-1S01, C1006-20W, 11213320, and 11219219), the Shenzhen Science and Technology Innovation Council (No. SGDX20201103093005028), the Innovation and Technology Commission of HongKong (Nos. GHP/021/19SZ and GHP/092/20GD), the Science and Technology Planning Project of Guangdong Province (No. 2021A0505110002), and the Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuankai Wang.

Electronic Supplementary Material

Low-frequency blue energy harvesting for sustainable and active anticorrosion

Supplementary material, approximately 104 MB.

Supplementary material, approximately 26.9 MB.

Supplementary material, approximately 23.0 MB.

Supplementary material, approximately 22.3 MB.

Supplementary material, approximately 30.2 MB.

Supplementary material, approximately 112 MB.

Supplementary material, approximately 112 MB.

Supplementary material, approximately 3.22 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Feng, Y., Wu, H. et al. Low-frequency blue energy harvesting for sustainable and active anticorrosion. Nano Res. 16, 11871–11877 (2023). https://doi.org/10.1007/s12274-023-5623-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5623-0

Keywords

Navigation