Skip to main content
Log in

Design and optical performance investigation of all-sprayable ultrablack coating

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although ultrablack surfaces are urgently needed in wide applications owing to their extremely low reflectance over a broadband wavelength, obtaining simultaneously the ultrablackness and mechanical robustness by simple process technique is still a great challenge. Herein, by decoupling different light extinction effects to different layers of coating, we design an ultrablack coating that is all-sprayable in whole process. This coating presents low reflectance over visible-mid-infrared (VIS-MIR) wavelength (av. R ≈ 1% in VIS), low multi-angle scattering (bidirectional reflection distribution function (BRDF) = 10−2−10−3 sr−1), together with good substrate adhesion grade and self-cleaning ability, which are superior to most reported sprayable ultrablack surfaces. The light extinction effects of each layer are discussed. This method is also applicable in other material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Theocharous, E.; Chunnilall, C. J.; Mole, R.; Gibbs, D.; Fox, N.; Shang, N. G.; Howlett, G.; Jensen, B.; Taylor, R.; Reveles, J. R. et al. The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications. Opt. Express 2014, 22, 7290–7307.

    Google Scholar 

  2. Akutsu, T.; Saito, Y.; Sakakibara, Y.; Sato, Y.; Niwa, Y.; Kimura, N.; Suzuki, T.; Yamamoto, K.; Tokoku, C.; Koike, S. et al. Vacuum and cryogenic compatible black surface for large optical baffles in advanced gravitational-wave telescopes. Opt. Mater. Express 2016, 6, 1613–1626.

    CAS  Google Scholar 

  3. Lehman, J.; Theocharous, E.; Eppeldauer, G.; Pannell, C. Gold-black coatings for freestanding pyroelectric detectors. Meas. Sci. Technol. 2003, 14, 916–922.

    CAS  Google Scholar 

  4. Lehman, J.; Sanders, A.; Hanssen, L.; Wilthan, B.; Zeng, J. N.; Jensen, C. Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate. Nano Lett. 2010, 10, 3261–3266.

    CAS  Google Scholar 

  5. Selvakumar, N.; Krupanidhi, S. B.; Barshilia, H. C. Carbon nanotube-based tandem absorber with tunable spectral selectivity: Transition from near-perfect blackbody absorber to solar selective absorber. Adv. Mater. 2014, 26, 2552–2557.

    CAS  Google Scholar 

  6. Li, P. F.; Liu, B. A.; Ni, Y. Z.; Liew, K. K.; Sze, J.; Chen, S.; Shen, S. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 2015, 27, 4585–4591.

    CAS  Google Scholar 

  7. Tu, C.; Cai, W. F.; Chen, X.; Ouyang, X. L.; Zhang, H.; Zhang, Z. A 3D-structured sustainable solar-driven steam generator using superblack nylon flocking materials. Small 2019, 15, 1902070.

    Google Scholar 

  8. Wang, H. Q.; Zhang, C.; Ji, X. J.; Yang, J. M.; Zhang, Z. H.; Ma, Y.; Zhang, Z. H.; Zhou, B.; Shen, J.; Du, A. Over 11 kg·m2·h1 evaporation rate achieved by cooling metal-organic framework foam with pine needle-like hierarchical structures to subambient temperature. ACS Appl. Mater. Interfaces 2022, 14, 10257–10266.

    CAS  Google Scholar 

  9. Meng, T. T.; Li, Z. T.; Wan, Z. M.; Zhang, J.; Wang, L. Z.; Shi, K. J.; Bu, X. T.; Alshehri, S. M.; Bando, Y.; Yamauchi, Y. et al. MOF-Derived nanoarchitectured carbons in wood sponge enable solar-driven pumping for high-efficiency soil water extraction. Chem. Eng. J. 2023, 452, 139193.

    CAS  Google Scholar 

  10. Peng, L.; Liu, D. Q.; Cheng, H. F.; Zhou, S.; Zu, M. A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater. 2018, 6, 1801006.

    Google Scholar 

  11. Li, Y.; Bai, X.; Yang, T. Z.; Luo, H. L.; Qiu, C. W. Structured thermal surface for radiative camouflage. Nat. Commun. 2018, 9, 273.

    Google Scholar 

  12. Huang, Y. J.; Pu, M. B.; Zhao, Z. Y.; Li, X.; Ma, X. L.; Luo, X. G. Broadband metamaterial as an “invisible” radiative cooling coat. Opt. Commun. 2018, 407, 204–207.

    CAS  Google Scholar 

  13. Wang, G.; Xing, F.; Wei, M. S.; You, Z. Rapid optimization method of the strong stray light elimination for extremely weak light signal detection. Opt. Express 2017, 25, 26175–26185.

    Google Scholar 

  14. Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D. N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047.

    CAS  Google Scholar 

  15. Yang, Z. P.; Hsieh, M. L.; Bur, J. A.; Ci, L. J.; Hanssen, L. M.; Wilthan, B.; Ajayan, P. M.; Lin, S. Y. Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array. Appl. Opt. 2011, 50, 1850–1855.

    CAS  Google Scholar 

  16. Tao, H. Y.; Lin, J. Q.; Hao, Z. Q.; Gao, X.; Song, X. W.; Sun, C. K.; Tan, X. Formation of strong light-trapping Nano- and microscale structures on a spherical metal surface by femtosecond laser filament. Appl. Phys. Lett. 2012, 100, 201111.

    Google Scholar 

  17. Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

    Google Scholar 

  18. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

    CAS  Google Scholar 

  19. Wattoo, A. G.; Bagheri, R.; Ding, X. F.; Zheng, B. Z.; Liu, J. K.; Xu, C.; Yang, L. J.; Song, Z. L. Template free growth of robustly stable nanophotonic structures: Broadband light superabsorbers. J. Mater. Chem. C 2018, 6, 8646–8662.

    CAS  Google Scholar 

  20. Chen, Y. L.; Zhao, G. M.; Ren, L. P.; Yang, H. J.; Xiao, X. F.; Xu, W. L. Blackbody-inspired array structural polypyrrole-sunflower disc with extremely high light absorption for efficient photothermal evaporation. ACS Appl. Mater. Interfaces 2020, 12, 46653–46660.

    CAS  Google Scholar 

  21. Amemiya, K.; Koshikawa, H.; Imbe, M.; Yamaki, T.; Shitomi, H. Perfect blackbody sheets from nano-precision microtextured elastomers for light and thermal radiation management. J. Mater. Chem. C 2019, 7, 5418–5425.

    CAS  Google Scholar 

  22. Ci, L. J.; Vajtai, R.; Ajayan, P. M. Vertically aligned large-diameter double-walled carbon nanotube arrays having ultralow density. J. Phys. Chem. C 2007, 111, 9077–9080.

    CAS  Google Scholar 

  23. Brown, R. J. C.; Brewer, P. J.; Milton, M. J. T. The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces. J. Mater. Chem. 2002, 12, 2749–2754.

    CAS  Google Scholar 

  24. Lin, H.; Ouyang, M. Z.; Chen, B. X.; Zhu, Q. F.; Wu, J. S.; Lou, N.; Dong, L. T.; Wang, Z. B.; Fu, Y. G. Design and fabrication of moth-eye subwavelength structure with a waist on silicon for broadband and wide-angle anti-reflection property. Coatings 2018, 8, 360.

    Google Scholar 

  25. Yang, Z. P.; Ci, L.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451.

    CAS  Google Scholar 

  26. Kanamori, Y.; Sasaki, M.; Hane, K. Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 1999, 24, 1422–1424.

    CAS  Google Scholar 

  27. Ng, C.; Yap, L. W.; Roberts, A.; Cheng, W. L.; Gómez, D. E. Black gold: Broadband, high absorption of visible light for photochemical systems. Adv. Funct. Mater. 2017, 27, 1604080.

    Google Scholar 

  28. Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M. Carbon nanotube-based black coatings. Appl. Phys. Rev. 2018, 5, 011103.

    Google Scholar 

  29. Gokhale, V. J.; Shenderova, O. A.; Mcguire, G. E.; Rais-Zadeh, M. Infrared absorption properties of carbon nanotube/nanodiamond based thin film coatings. J. Microelectromech. Syst. 2013, 23, 191–197.

    Google Scholar 

  30. Wei, W. Y.; Li, M. W.; Han, Y.; Wu, M. J.; Yan, J.; Liu, M. J.; Chen, Y. L. Flexible and robust ultrablack elastomers with a dual-gradient design for broadband and efficient light management. Adv. Opt. Mater. 2022, 10, 2101854.

    CAS  Google Scholar 

  31. Jin, Y. H.; Zhang, T. F.; Zhao, J.; Zhao, Y. X.; Li, C.; Song, J.; Hao, X. P.; Wang, J. P.; Jiang, K. L.; Fan, S. S. et al. Spray coating of a perfect absorber based on carbon nanotube multiscale composites. Carbon 2021, 178, 616–624.

    CAS  Google Scholar 

  32. Wang, H. Q.; Du, A.; Ji, X. J.; Zhang, C.; Zhou, B.; Zhang, Z. H.; Shen, J. Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation. ACS Appl. Mater. Interfaces 2019, 11, 42057–42065.

    CAS  Google Scholar 

  33. Li, H. M.; Chen, Y. F.; Wang, P. D.; Xu, B. S.; Ma, Y. B.; Wen, W. B.; Yang, Y. Z.; Fang, D. N. Porous carbon-bonded carbon fiber composites impregnated with SiO2−Al2O3 aerogel with enhanced thermal insulation and mechanical properties. Ceram. Int. 2018, 44, 3484–3487.

    CAS  Google Scholar 

  34. Yu, Y. L.; Chen, S.; Jia, Y.; Qi, T.; Xiao, L.; Cui, X.; Zhuang, D. M.; Wei, J. Q. Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification. Carbon 2020, 169, 134–141.

    CAS  Google Scholar 

  35. Wang, B. B.; Li, D. H.; Tang, M. W.; Ma, H. B.; Gui, Y. G.; Tian, X.; Quan, F. Y.; Song, X. Q.; Xia, Y. Z. Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors. J. Alloys Compd. 2018, 749, 517–522.

    CAS  Google Scholar 

  36. Sun, W.; Du, A.; Feng, Y.; Shen, J.; Huang, S. M.; Tang, J.; Zhou, B. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 2016, 10, 9123–9128.

    CAS  Google Scholar 

  37. Wattoo, A. G.; Xu, C.; Yang, L. J.; Ni, C. L.; Yu, C.; Nie, X.; Yan, M. S.; Mao, S. D.; Song, Z. L. Design, fabrication and thermal stability of spectrally selective TiAlN/SiO2 tandem absorber. Sol. Energy 2016, 138, 1–9.

    CAS  Google Scholar 

  38. Tsao, S. H.; Wan, D. H.; Lai, Y. S.; Chang, H. M.; Yu, C. C.; Lin, K. T.; Chen, H. L. White-light-induced collective heating of gold nanocomposite/Bombyx mori silk thin films with ultrahigh broadband absorbance. ACS Nano 2015, 9, 12045–12059.

    CAS  Google Scholar 

  39. Hedayati, M. K.; Javaherirahim, M.; Mozooni, B.; Abdelaziz, R.; Tavassolizadeh, A.; Chakravadhanula, V. S. K.; Zaporojtchenko, V.; Strunkus, T.; Faupel, F.; Elbahri, M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. 2011, 23, 5410–5414.

    CAS  Google Scholar 

  40. Gittleson, F. S.; Hwang, D.; Ryu, W. H.; Hashmi, S. M.; Hwang, J.; Goh, T.; Taylor, A. D. Ultrathin nanotube/nanowire electrodes by spin-spray layer-by-layer assembly: A concept for transparent energy storage. ACS Nano 2015, 9, 10005–10017.

    CAS  Google Scholar 

  41. Majumder, M.; Rendall, C.; Li, M.; Behabtu, N.; Eukel, J. A.; Hauge, R. H.; Schmidt, H. K.; Pasquali, M. Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 2010, 65, 2000–2008.

    CAS  Google Scholar 

  42. Lin, S.; Wang, H. Y.; Zhang, X. N.; Wang, D.; Zu, D.; Song, J. N.; Liu, Z. L.; Huang, Y.; Huang, K.; Tao, N. et al. Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy 2019, 62, 111–116.

    CAS  Google Scholar 

  43. Mulay, M. R.; Chauhan, A.; Patel, S.; Balakrishnan, V.; Halder, A.; Vaish, R. Candle soot: Journey from a pollutant to a functional material. Carbon 2019, 144, 684–712.

    CAS  Google Scholar 

  44. Khodasevych, I. E.; Wang, L. P.; Mitchell, A.; Rosengarten, G. Micro- and nanostructured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852–881.

    CAS  Google Scholar 

  45. Torres, J. F.; Tsuda, K.; Murakami, Y.; Guo, Y. F.; Hosseini, S.; Asselineau, C. A.; Taheri, M.; Drewes, K.; Tricoli, A.; Lipiński, W. et al. Highly efficient and durable solar thermal energy harvesting via scalable hierarchical coatings inspired by stony corals. Energy Environ. Sci. 2022, 15, 1893–1906.

    CAS  Google Scholar 

  46. Leloup, F. B.; Forment, S.; Dutré, P.; Pointer, M. R.; Hanselaer, P. Design of an instrument for measuring the spectral bidirectional scatter distribution function. Appl. Opt. 2008, 47, 5454–5467.

    Google Scholar 

  47. Zheng, Z. R.; Zhou, J.; Gu, P. F. Roughness characterization of well-polished surfaces by measurements of light scattering distribution. Opt. Appl. 2010, 40, 811–818.

    CAS  Google Scholar 

  48. Balling, B. A comparative study of the bidirectional reflectance distribution function of several surfaces as a mid-wave infrared diffuse reflectance standard. Ohio: Department of Engineering Physics, Air Force Institute of Technology, 2009.

  49. Zhang, X. N.; Qiu, J.; Li, X. C.; Zhao, J. M.; Liu, L. H. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 2020, 59, 2337–2344.

    CAS  Google Scholar 

  50. Hozumi, A.; Takai, O. Effect of hydrolysis groups in fluoro-alkyl silanes on water repellency of transparent two-layer hard-coatings. Appl. Surf. Sci. 1996, 103, 431–441.

    CAS  Google Scholar 

  51. Dodge, M. J. Refractive properties of magnesium fluoride. Appl. Opt. 1984, 23, 1980–1985.

    CAS  Google Scholar 

  52. Guan, C.; Lü, C. L.; Liu, Y. F.; Yang, B. Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. J. Appl. Polym. Sci. 2006, 102, 1631–1636.

    CAS  Google Scholar 

  53. Guo, J.; Li, D. D.; Zhao, H.; Zou, W. Z.; Yang, Z. S.; Qian, Z. C.; Yang, S. J.; Yang, M.; Zhao, N.; Xu, J. Cast-and-use super black coating based on polymer-derived hierarchical porous carbon spheres. ACS Appl. Mater. Interfaces 2019, 11, 15945–15951.

    CAS  Google Scholar 

  54. Guo, J.; Li, D. D.; Qian, Z. C.; Luo, H.; Yang, M.; Wang, Q. X.; Xu, J.; Zhao, N. Carbon vesicles: A symmetry-breaking strategy for wideband and solvent-processable ultrablack coating materials. Adv. Funct. Mater. 2020, 30, 1909877.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Nos. 11832010, 11890682 and 21721002), the National Key Basic Research Program of China (No. 2018YFA0208403), and the Austrian-Chinese Cooperative Research and Development Projects (No. GJHZ2043), Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhang or Zhong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Li, H., Sun, S. et al. Design and optical performance investigation of all-sprayable ultrablack coating. Nano Res. 16, 12901–12909 (2023). https://doi.org/10.1007/s12274-023-5590-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5590-5

Keywords

Navigation