Skip to main content

Advertisement

Log in

Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective

  • Review Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This article reviews the principles, mechanisms and comparisons of glass surface cleaning by various wet chemical and dry cleaning methods, including acid–base–solvent combinations, HF etching, chelation, vapor degreasing, UV–ozone, oxygen plasma, heating/pyrolysis, ultrasonic and laser treatments. This article also covers four major hydrophobic coating strategies, namely hydrosilylation, silanization, plasma treatment and DC sputtering, along with their process-wise applications. A special emphasis is given on the silanization process: its mechanism, factors affecting, choices of solvents and precursors, and limitations, which is utilized in anti-reflective (AR) sol–gel coating formation as well. Some of the common surface analytical techniques, its utility and reported data has also been reviewed in this context. Finally, a section has been devoted to anti-reflective (AR) and transmittance properties, elucidating the theory and methods of AR coating generation, factors affecting and related literature reports. The challenge lies in coming up with non-harsh cleaning procedures and water-based hydrophobic coatings, with an eye for application in ecological proximity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Trier F. The glass surface and ways of its modification. www.ksr.tul.cz/glassman/download/10_05_10-00-Trier.pdf

  2. Kern W, Puotinen DA (1970) Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev 31:187–206

    Google Scholar 

  3. Shriver-Lake LC (1998) Silane-modified surfaces for biomaterial immobilization. In: Cass T, Ligler FS (eds) Immobilized biomolecules in analysis: a practical approach. Oxford University Press, London, pp 1–14

    Google Scholar 

  4. Cras JJ, Rowe-Taitt CA, Nivens DA, Ligler FS (1999) Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens Bioelectron 14:683–688

    Article  Google Scholar 

  5. Han Y, Mayer D, Offenhäusser A, Ingebrandt S (2006) Surface activation of thin silicon oxides by wet cleaning and silanization. Thin Solid Films 510:175–180

    Article  Google Scholar 

  6. Hattori A (1997) Measurement of glass surface contamination. J Non-Cryst Solids 218:196–204

    Article  Google Scholar 

  7. Iglauer S, Salamah A, Sarmadivaleh M, Liu K, Phan C (2014) Contamination of silica surfaces: impact on water–CO2–quartz and glass contact angle measurements. Int J Greenh Gas Control 22:325–328

    Article  Google Scholar 

  8. Kondoh E, Baklanov MR, Jonckx F, Maex K (1998) Characterisation of HF-last cleaning of ion-implanted Si Surfaces. Mater Sci Semicond Process 1:107–117

    Article  Google Scholar 

  9. Anguita J, Briones F (1998) HF/H20 vapor etching of SiO2 sacrificial layer for large-area surface-micromachined membranes. Sens Actuators A 64:247–251

    Article  Google Scholar 

  10. Legtenberg R, Tihnans HAC, Elders J, Elwenspoek M (1994) Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms. Sens Actuators A 43:230–238

    Article  Google Scholar 

  11. Lee JH, Jang WI, Lee CS, Lee Y, Choi CA, Baek JT, Yoo HJ (1998) Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal. Sens Actuators A 61:27–32

    Article  Google Scholar 

  12. Rafols C, Herodes K, Beltran JL, Bosch E, Roses M (1997) lonic equilibria in aqueous organic solvent mixtures The equilibria of HF in an ethanol + water mixture used for cleaning up semiconductors. J Electroanal Chem 433:77–83

    Article  Google Scholar 

  13. Martin AR, Baeyens M, Hub W, Mertens PW, Kolbesen BO (1999) Alkaline cleaning of silicon wafers: additives for the prevention of metal contamination. Microelectron Eng 45:197–208

    Article  Google Scholar 

  14. Abd-Allah R (2013) Chemical cleaning of soiled deposits and encrustations on archaeological glass: a diagnostic and practical study. J Cult Herit 14:97–108

    Article  Google Scholar 

  15. Pulker H, Pulker HK (1999) Coatings on glass, 2nd edn. Elsevier, Amsterdam, pp 63–64

    Google Scholar 

  16. Bolon DA, Kunz CO (1972) Ultraviolet depolymerization of photoresist polymers. J Polym Eng Sci 12:109–111

    Article  Google Scholar 

  17. Vig JR, Cook CF Jr, Schwidtal K, LeBus JW, Hafner E (1974) In: Proceedings of 28th annual symposium on frequency control, Philadelphia, PA, AD 011113, pp 96–108

  18. Vig JR, LeBus JW, Filler RL (1975) In: Proceedings of 29th annual symposium on frequency control, Philadelphia, PA, AD A017466, pp 220–229

  19. Vig JR (1976) IEEE TransParts Hybrids Packag PHP 12(4):365–370

    Article  Google Scholar 

  20. Vig JR (1993) Chapter 6, Ultraviolet-ozone cleaning of semiconductor surfaces. In: Kern Werner (ed) Handbook of semiconductor wafer cleaning technology, science technology and applications. Noyes Publications, Park Ridge

    Google Scholar 

  21. Wang C, He X (2006) Preparation of hydrophobic coating on glass surface by dielectric barrier discharge using a 16 kHz power supply. Appl Surf Sci 252:8348–8351

    Article  Google Scholar 

  22. Xu XJ (2001) Dielectric barrier discharge—properties and applications. Thin Solid Films 390:237–242

    Article  Google Scholar 

  23. Pochner K, Neff W, Lebert R (1995) Atmospheric pressure gas discharges for surface treatment. Surf Coat Technol 74(75):394

    Article  Google Scholar 

  24. Napartovich AP (2001) Overview of atmospheric pressure discharges producing nonthermal plasma. Plasmas Polym 6:1–14

    Article  Google Scholar 

  25. Sakuhana S (1985) Fundamentals and applications for glass surface. Uchida Rokaku-Ho Pub, Tokyo, pp 103–107 (in Japanese)

    Google Scholar 

  26. Yamamoto T, Okubo M, Imai N, Mori Y (2004) Improvement on hydrophilic and hydrophobic properties of glass surface treated by nonthermal plasma induced by silent corona discharge. Plasma Chem Plasma Process 24:1–12

    Article  Google Scholar 

  27. Birch WR (2013) Cleaning glass surfaces. In: Aegerter MA, Mennig M (eds) Sol–Gel Technologies for Glass Producers and Users. Springer, Berlin

    Google Scholar 

  28. Lu YF, Aoyagi Y (1994) Laser cleaning—a new surface cleaning method without pollutions. MRS Proc 344:329

    Article  Google Scholar 

  29. Elnaggar A, Mohamed H, Mahgoub G, Fouad M (2010) Roman glass: removal of burial encrustation and corrosion products. Stud Conserv 55:80–84

    Article  Google Scholar 

  30. Weng T-S, Tsai C-H (2014) Laser-induced backside wet cleaning technique for glass substrates. Appl Phys A 116:597–604

    Article  Google Scholar 

  31. White ML (1970) The detection and control of organic contaminants on surfaces. In: Goldfinger G (ed) Clean Surfaces: Their Preparation and Characterization for Interfacial Studies. Marcel Dekker, New York, pp 361–373

    Google Scholar 

  32. Flinn DH, Guzonas DA, Yoon R-H (1994) Characterization of silica surfaces hydrophobized by octadecyltrichlorosilane. Colloids Surf A Physiochem Eng Asp 87:163–176

    Article  Google Scholar 

  33. Saraji S, Goual L, Piri M, Plancher H (2013) Wettability of supercritical carbondioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions. Langmuir 29:6856–6866

    Article  Google Scholar 

  34. Zisman WA (1964) In: Fowkes FM (ed) Contact angle, wettability and adhesion, advances in chemistry series, vol 43. American Chemical Society, Washington, p 1

    Chapter  Google Scholar 

  35. Somasundaran P (1970) Pretreatment of mineral surfaces and its effect on their properties. In: Goldfinger G (ed) Clean Surfaces: Their Preparation and Characterization for Interfacial Studies. Marcel Dekker, New York, pp 285–306

    Google Scholar 

  36. Palik ED, Bermudez VM, Glembocki OJ (1985) Ellipsometric study of orientation-dependent etching of silicon in aqueous KOH. J Electrochem Soc 132:871–884

    Article  Google Scholar 

  37. Palik ED, Glembocki OJ, Heard I Jr, Bruno PS, Tenerz L (1991) Etching roughness for (100) silicon surfaces in aqueous KOH. J Appl Phys 70(6):3291–3300

    Article  Google Scholar 

  38. Adamson AW, Ling I (1964) The status of contact angle as a thermodynamic property. Adv Chem Ser 43:57–73

    Article  Google Scholar 

  39. Donose BC, Taran E, Vakarelski IU, Shinto H, Higashitani K (2006) Effects of cleaning procedures of silica wafers on their friction characteristics. J Colloid Interface Sci 299:233–237

    Article  Google Scholar 

  40. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22:339–360

    Article  Google Scholar 

  41. Palacios JC, Cruz GJ, Olayo MG, Chavez Carvayar JA (2009) Characterization of hydrophobic and hydrophilic polythiophene–silver–copper thin film composites synthesized by DC glow discharges. Surf Coat Technol 203:3032–3036

    Article  Google Scholar 

  42. Dey T (2011) Nano-scale height manipulation in Sputter-deposited Photolithographic Patterns. J Optoelectron Adv Mater 13:251–254

    Google Scholar 

  43. Buriak JM (1999) Functionalization of silicon surfaces for device applications. J Lab Autom 4:36–39

    Article  Google Scholar 

  44. Yu WH, Kang ET, Neoh KG (2003) Electroless metallization of hydrogen-terminated silicon surface functionalized by Viologen. Proc Electrochem Soc 13:137–146

    Google Scholar 

  45. http://nsl.caltech.edu/research:surfaces

  46. http://www.silicone.jp/e/catalog/pdf/SilaneCouplingAgents_e.pdf

  47. Bhatia SK, Teixeira JL, Anderson M, Shriver-Lake LC, Calvert JM, Georger JH, Hickman JJ, Dulcey CS, Schoen PE, Ligler FS (1993) Fabrication of surfaces resistant to protein adsorption and application to two–dimensional protein patterning. Anal Biochem 208:197–205

    Article  Google Scholar 

  48. Kurth DG, Bein T (1993) Surface reactions on thin layers of silane coupling agents. Langmuir 9:2965–2973

    Article  Google Scholar 

  49. Hong H-G, Jiang M, Sligar SG, Bohn PW (1994) Cysteine-specific surface tethering of genetically engineered cytochromes for fabrication of metalloprotein nanostructures. Langmuir 10:153–158

    Article  Google Scholar 

  50. Ambrohewicz D, Ciesielczyk F, Nowacka M, Karasiewicz J, Piasecki A, Maciejewski H, Jesionowski T (2013) Fluoroalkylsilane versus alkylsilane as hydrophobic agents for silica and silicates. J Nanomater. Article ID 631938. doi:10.1155/2013/631938

  51. Smith EA, Chen W (2008) How to prevent the loss of surface functionality derived from aminosilanes. Langmuir 24(21):12405–12409

    Article  Google Scholar 

  52. Fiorilli S, Rivolo P, Descrovi E, Ricciardi C, Pasquardini L, Lunelli L, Vanzetti L, Pederzolli C, Onida B, Garrone E (2008) Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates. J Colloid Interface Sci 321:235–241

    Article  Google Scholar 

  53. Metwalli E, Haines D, Becker O, Conzone S, Pantano CG (2006) Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates. J Colloid Interface Sci 298:825–831

    Article  Google Scholar 

  54. Arkles B (2006) Hydrophobicity, hydrophilicity and silanes. Paint Coat Ind Mag. Oct 2006

  55. Vansant EF, Van Der Voort P, Vrancken KC (1995) Characterization and chemical modification of the silica surface. Elsevier, Amsterdam

    Google Scholar 

  56. Hozumi A, Yokogawa Y, Kameyama T, Sugimura H, Hayashi K, Shirayama H, Takai O (2001) Amino-terminated self-assembled monolayer on a SiO2 surface formed by chemical vapor deposition. J Vac Sci Technol A 19:1812–1816

    Article  Google Scholar 

  57. Siqueira Petri DF, Wenz G, Schunk P, Schimmel T (1999) An improved method for the assembly of amino-terminated monolayers on SiO2 and the vapor deposition of gold layers. Langmuir 15:4520–4523

    Article  Google Scholar 

  58. Wasserman SR, Tao Y-T, Whitesides GM (1989) Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir 5:1074–1087

    Article  Google Scholar 

  59. Dey T (2011) Colloidal crystalline array of hydrogel-coated silica nanoparticles: effect of temperature and core size on photonic properties. J Sol–Gel Sci Technol 57:132–141

    Article  Google Scholar 

  60. Krasnoslobodtsev AV, Smirnov SN (2002) Effect of water on silanization of silica by trimethoxysilanes. Langmuir 18:3181–3184

    Article  Google Scholar 

  61. McGovern ME, Kallury KMR, Thompson M (1994) Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir 10:3607–3614

    Article  Google Scholar 

  62. Dave V, Dubey P, Gupta HO, Chandra R (2013) Influence of sputtering pressure on the structural, optical and hydrophobic properties of sputtered deposited HfO2 coatings. Thin Solid Films 549:2–7

    Article  Google Scholar 

  63. Dave V, Gupta HO, Chandra R (2014) Influence of sputtering pressure on the structural, optical and hydrophobic properties of sputtered deposited HfO2 coatings. Appl Surf Sci 295:231–239

    Article  Google Scholar 

  64. Pereira L, Barquinha P, Fortunato E, Martins R (2005) Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide. Mater Sci Eng, B 118:210–213

    Article  Google Scholar 

  65. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  Google Scholar 

  66. Xiao Y, Shen J, Xie Z, Zhou B, Wu G (2007) Microstructure control of nanoporous silica thin film prepared by sol–gel process. J Mater Sci Technol 23:504–508

    Article  Google Scholar 

  67. Meng X, Wang Y, Wang H, Zhong J, Chen R (2013) Preparation of the multifunctional antireflective films from a templating composite silica sol with entwining structures. Surf Coat Technol 236:518–524

    Article  Google Scholar 

  68. Mahadik SA, Kavale MS, Mukherjee SK, Rao AV (2010) Transparent superhydrophobic silica coatings on glass by sol–gel method. Appl Surf Sci 257:333–339

    Article  Google Scholar 

  69. Aptekar JW, Cassidy MC, Johnson AC, Barton RA, Lee M, Ogier AC, Vo C, Anahtar MN, Ren Y, Bhatia SN, Ramanathan C, Cory DG, Hill AL, Mair RW, Rosen MS, Walsworth RL, Marcus CM (2009) Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents. ACS Nano 3(12):4003–4008

    Article  Google Scholar 

  70. Carre A, Lacarriere V (2006) Study of surface charge properties of minerals and surface-modified substrates by wettability measurement. In: Mittal KL (ed) Contact Angle, Wettability and Adhesion, vol 4. VSP/Brill, Leiden, pp 1–14

    Google Scholar 

  71. Johansson U, Holmgren A, Forsling W, Frost RL (1999) Adsorption of silane coupling agents onto kaolinite surfaces. Clay Miner 34:239–246

    Article  Google Scholar 

  72. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  73. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  Google Scholar 

  74. Khranovskyy V, Ekblad T, Yakimova R, Hultman L (2012) Surface morphology effects on the light-controlled wettability of ZnO nanostructures. Appl Surf Sci 258:8146–8152

    Article  Google Scholar 

  75. Henry F, Renaux F, Coppee S, Lazzaroni R, Vandencasteele N, Reniers F, Snyders R (2012) Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process. Surf Sci 606:1825–1829

    Article  Google Scholar 

  76. Saarikoski I, Korpela FJ, Suvanto M, Pakkanen TT (2012) Superhydrophobic elastomer surfaces with nanostructured micronails. Surf Sci 606:91–98

    Article  Google Scholar 

  77. Wu K-R, Wang J-J, Liu W-C, Chen Z-S, Wu J-K (2006) Deposition of graded TiO2 films featured both hydrophobic and photo-induced hydrophilic properties. Appl Surf Sci 252:5829–5838

    Article  Google Scholar 

  78. Messner R (1947) Importance of interference in increasing metallic reflection, and its practical utilization in optics. Optik 2:228–334

    Google Scholar 

  79. Vong MSW, Sermon PA (1997) Observing the breathing of silica sol–gel-derived anti-reflection optical coatings. Thin Solid Films 293:185–195

    Article  Google Scholar 

  80. Chapter 4: Antireflection coatings made by a sol–gel process. University of Groningen, thesis

  81. Gombert A, Glaubitt W, Rose K, Dreibholz J, Bläsi B, Heinzel A, Sporn D, Döll W, Wittwer V (1999) Subwavelength-structured antireflective surfaces on glass. Thin Solid Films 351:73–78

    Article  Google Scholar 

  82. Chen D (2001) Anti-reflection (AR) coatings made by sol–gel processes: a review. Sol Energy Mater Sol Cells 68:313–336

    Article  Google Scholar 

  83. Yoldas BE, Partlow PW (1985) Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films 129:1–14

    Article  Google Scholar 

  84. Beganskiene A, Sakirzanovas S, Kazadojev I, Melninkaitis A, Sirutkaitis V, Kareiva A (2007) Sol–gel derived antireflective coating with controlled thickness and reflective index. Mater Sci-Pol 25(3):817–824

    Google Scholar 

  85. Suratwala TI, Hanna ML, Miller EL, Whitman PK, Thomas IM, Ehrmann PR, Maxwell RS, Burnham AK (2003) Surface chemistry and trimethylsilyl functionalization of Stöber silica sols. J Non-Cryst Solids 316:349–363

    Article  Google Scholar 

  86. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  87. San Vicente G, Bayón R, Germán N, Morales A (2009) Long-term durability of sol–gel porous coatings for solar glass covers. Thin Solid Films 517:3157–3160

    Article  Google Scholar 

  88. Liu B-T, Yeh W-D (2010) Antireflective surface fabricated from colloidal silica nanoparticles. Colloids Surfaces A Physicochem Eng Aspects 356:145–149

    Article  Google Scholar 

  89. Meng X, Wang Y, Wang H, Zhong J, Chen R (2014) Preparation of hydrophobic and abrasion-resistant silica antireflective coatings by using a cationic surfactant to regulate surface morphologies. Sol Energy 101:283–290

    Article  Google Scholar 

  90. Husing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  91. Pakonk GM, Elaloui E, Achard P, Chevalier B, Chevalier JL, Durant M (1995) Physical properties of silica gels and aerogels prepared with new polymeric precursors. J Non-Crys Sol 186:1–8

    Article  Google Scholar 

  92. Ehrburger-Dolle F, Dallamano J, Elaloui E, Pajonk G (1995) Relations between the texture of silica aerogels and their preparation. J Non-Crys Sol 186:9–17

    Article  Google Scholar 

  93. Borne A, Chevalier B, Chevalier JL, Quenard D, Elaloui E, Lambard J (1995) Characterization of silica aerogel with the atomic-force microscope and SAXS. J Non-Crys Sol 188:235–242

    Article  Google Scholar 

  94. Wu G, Wang J, Shen J, Yang T, Zhang Q, Zhang F (2000) A novel route to control refractive index of sol–gel derived nano-porous silica films used as broadband antireflective coatings. Mater Sci Eng B 78:135–139

    Article  Google Scholar 

  95. Wang B, Wilkes Hendrick JC, Liptak SC, McGrath JE (1991) New high-refractive-index organic/inorganic hybrid materials from sol–gel processing. Macromolecules 24:3449–3450

    Article  Google Scholar 

  96. Haereid S, Dahle M, Lima S, Einarsrud M (1995) Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J Non-Crys Sol 186:96–103

    Article  Google Scholar 

  97. Prado R, Beobide G, Marcaide A, Goikoetxea J, Aranzabe A (2010) Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Sol Energy Mater Sol Cells 94:1081–1088

    Article  Google Scholar 

  98. Rutan M (2011) Abrasion resistant anti-reflective sol–gel coatings. High School Reports, University of Rochester http://www.lle.rochester.edu/media/publications/high_school_reports/documents/hs_reports/2011/Rutan.pdf

  99. Hessel CM, Rasch MR, Hueso JL, Goodfellow BW, Akhavan VA, Puvanakrishnan P, Tunnell JW, Korgel BA (2010) Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging. Small 6:2026–2034

    Article  Google Scholar 

  100. Maboudian R (1998) Surface processes in MEMS technology. Surf Sci Rep 30:207–269

    Article  Google Scholar 

  101. Howe RT, Boser BE, Pisano AP (1996) Polysilicon integrated microsystems: technologies and applications. Sens Actuators, A 56:167–177

    Article  Google Scholar 

  102. Hornbeck LJ (1993) In: Proceedings of IEEE international electron devices meeting, Washington, DC, pp 381–384

  103. Sampsell JB (1994) Digital micromirror device and its application to projection displays. J Vac Sci Technol B 12:3242–3246

    Article  Google Scholar 

  104. Payne RS, Sherman S, Lewis S, Howe RT (1995) In: Proc. IEEE Int. Solid-State Circuits Conf, San Francisco, CA, pp 164–165

    Google Scholar 

  105. Chau KH-L et al (1995) In: Proceedings of 8th international conference on solid-state sensors and actuators—Transducers’95, Stockholm, Sweden, pp 593–596

  106. Trimmer WS (1996) Micromechanics and MEMS, Classic and Seminal Papers to 1990. IEEE Press, New York

    Google Scholar 

  107. Jancar J, Polacek P (2011) Hydrolytically stable interphase on alumina and glass fibers via hydrosilylation. Compos Interfaces 18:633–644

    Article  Google Scholar 

  108. Van Leeuwen PWNM (2004) Homogenous catalysis: understanding the art. Kluwer, Dordrecht, pp 372–373

    Book  Google Scholar 

  109. Marciniec B (2009) Functionalisation and cross-linking of organosilicon polymers, In: Marciniec B (ed) Hydrosilylation: a comprehensive review on recent advances, Springer, Netherlands, pp 159–189 (chapter 5)

  110. Yang HT, Fang ZP, Fu XY, Tong LF (2008) Preparation of glass fiber-supported platinum complex catalyst for hydrosilylation reactions. Catal Commun 9:1092–1095

    Article  Google Scholar 

  111. Seed B (2001) Appendix: 3K silanizing glassware. Curr protoc Immunol 21:3KA 1-2

    Google Scholar 

  112. Deyhimi F, Coles JA (1982) Rapid silylation of a glass surface: choice of reagent and effect of experimental parameters on hydrophobicity. Helv Chim Acta 65:1752–1759

    Article  Google Scholar 

  113. Ammann D (1986) Ion-selective microelectrodes: principles design and application. Springer, Berlin

    Book  Google Scholar 

  114. Munoz J-L, Deyhimi F, Coles JA (1983) Silanization of glass in the making of ion-selective microelectrodes. J Neurosci Methods 8:231–247

    Article  Google Scholar 

  115. Ying C, Lung K, Matinlinna JP (2014) Surface pretreatment methods and silanization. In: Matinlinna JP (ed) Handbook of oral biomaterials. Pan Stanford Publishing, Singapore

    Google Scholar 

  116. Machado FW, Bossardi M, Ramos TS, Valente LL, Munchow EA, Piva E (2015) Application of resin adhesive on the surface of a silanized glass fiber-reinforced post and its effect on the retention to root dentin. J Endod 41:106–110

    Article  Google Scholar 

  117. Mosharraf R, Ranjbarian P (2013) Effects of post surface conditioning before silanization on bond strength between fiber post and resin cement. J Adv Prosthodont 5:126–132

    Article  Google Scholar 

  118. Karabela MM, Sideridou I (2011) Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dent Mater 27:825–835

    Article  Google Scholar 

  119. Miao X, Zhu M, Li Y, Zhang Q, Wang H (2012) Synthesis of dental resins using diatomite and nano-sized SiO2 and TiO2. Prog Nat Sci Mater Int 22:94–99

    Article  Google Scholar 

  120. Ho GW, Matinlinna JP (2011) Insights on ceramics as dental materials. Part II: Chem Surface Treat 3:117–123

    Google Scholar 

  121. Suri CR, Mishra GC (1996) Activating piezoelectric crystal surface by silanization for microgravimetric immunobiosensor application. Biosens Bioelectron 11:1199–1205

    Article  Google Scholar 

  122. Howarter JA, Youngblood JP (2006) Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 22:11142–11147

    Article  Google Scholar 

  123. Wang J, Wu G, Shen J, Yang T, Zhang Q, Zhou B, Deng Z, Fan B, Zhou D, Zhang F (2000) Scratch-resistant improvement of sol–gel derived nano-porous silica films. J Sol–Gel Sci Technol 18:219–224

    Article  Google Scholar 

  124. Li X, Shen J (2011) A scratch-resistant and hydrophobic broadband antireflective coating by sol–gel method. Thin Solid Films 519:6236–6240

    Article  Google Scholar 

  125. Puetz J, Gasparro G, Aegerter MA (2003) Liquid film spray deposition of transparent conducting oxide coatings. Thin Solid Films 442:40–43

    Article  Google Scholar 

  126. Mahadik SA, Mahadik DB, Kavale MS, Parale VG, Wagh PB, Barshilia HC, Gupta SC, Hegde PND, Rao AV (2012) Thermally stable and transparent superhydrophobic sol–gel coatings by spray method. J Sol–Gel Sci Technol 63:580–586

    Article  Google Scholar 

  127. Raut HK, Nair AS, Dinachali SS, Ganesh VA, Walsh TM, Ramakrishna S (2013) Porous SiO2 anti-reflective coatings on large-area substrates by electrospinning and their application to solar modules. Sol Energy Mater Sol Cells 111:9–15

    Article  Google Scholar 

  128. Muniz EC, Goes MS, Silva JJ, Varela JA, Joanni E, Parra R, Bueno PR (2011) Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol–gel method for application in dye solar cells. Ceram Int 37:1017–1024

    Article  Google Scholar 

  129. Yun TK, Park SS, Kim D, Hwang Y-K, Huh S, Bae JY, Won YS (2011) Pore-size effect on photovoltaic performance of dye-sensitized solar cells composed of mesoporous anatase-titania. J Power Sources 196:3678–3682

    Article  Google Scholar 

  130. Dhungel SK, Park JG (2010) Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells. Renewable Energy 35:2776–2780

    Article  Google Scholar 

  131. Ye L, Zhang Y, Zhang X, Hu T, Ji R, Ding B, Jiang B (2013) Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Sol Energy Mater Sol Cells 111:160–164

    Article  Google Scholar 

  132. Kim J, Kim J (2011) Fabrication of dye-sensitized solar cells using Nb2O5 blocking layer made by sol–gel method. J Nanosci Nanotechnol 11:7335–7338

    Article  Google Scholar 

  133. Lee JG, Cheon JH, Yang HS, Lee DK, Kim JH (2012) Enhancement of photovoltaic performance in dye-sensitized solar cells with the spin-coated TiO2 blocking layer. J Nanosci Nanotechnol 12:6026–6030

    Article  Google Scholar 

  134. Fang Z, Qiu Y, Kuffel E (2004) Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air. J Phys D Appl Phys 37:2261–2266

    Article  Google Scholar 

  135. Krumpolec R, Zahoranova A, Cernak M, Kovacik D (2012) Deposition of hydrophobic polymer films by atmospheric pressure plasma polymerization. In: WDS’12 Proceedings of contributed papers, part III, pp 24–29

  136. Barankin MD, Gonzalez E II, Habib SB, Gao L, Guschl PC, Hicks RF (2009) Hydrophobic films by atmospheric plasma curing of spun-on liquid precursors. Langmuir 25:2495–2500

    Article  Google Scholar 

  137. Ting JAS, Rosario LMD, Lee HV Jr, Ramos HJ, Tumlos RB (2014) Hydrophobic coating on glass surfaces via application of silicone oil and activated using a microwave atmospheric plasma jet. Surf Coat Technol 259:7–11

    Article  Google Scholar 

  138. Teshima K, Sugimura H, Inoue Y, Takai O (2003) Gas barrier performance of surface-modified silica films with grafted organosilane molecules. Langmuir 19:8331–8334

    Article  Google Scholar 

  139. Tsuji H, Sommani P, Hayashi Y, Kojima H, Sato H, Gotoh Y, Takaoka G, Ishikawa J (2011) Surface modification of silica glass by CHF3 plasma treatment and carbon negative-ion implantation for cell pattern adhesion. Surf Coat Technol 206:900–904

    Article  Google Scholar 

  140. Philipavičius J, Kazadojev I, Behanskienė A, Melninkaitis A, Sirutkaitis V, Kareiva A (2008) Mater Sci 14(4):283–287

    Google Scholar 

  141. Yamamoto T, Okubo M (2007) Nonthermal Plasma Technology. In: Wang LK, Hung Y-T, Shammas NK (eds) Advanced physicochemical treatment technologies. Handbook of environmental engineering, vol. 5. Springer, Humana Press, Totowa

  142. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790

    Article  Google Scholar 

  143. Hayashi K, Saito N, Sugimura H, Takai O, Nakagiri N (2002) Regulation of the surface potential of silicon substrates in micrometer scale with organosilane self-assembled monolayers. Langmuir 18:7469–7472

    Article  Google Scholar 

  144. Jung G-Y, Li Z, Wu W, Chen Y, Olynick DL, Wang S-Y, Tong WM, Williams RS (2005) Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 21:1158–1161

    Article  Google Scholar 

Download references

Acknowledgments

This literature review is the stepping stone for a research project, which is being funded by Enterprise Ireland and Keelings Farm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, T., Naughton, D. Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. J Sol-Gel Sci Technol 77, 1–27 (2016). https://doi.org/10.1007/s10971-015-3879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3879-x

Keywords

Navigation