Skip to main content
Log in

A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability. However, the oxidation susceptibility of metallic iron particles in the atmospheric environment is regarded as a major factor causing performance degradation. Although many efforts have been developed to avoid their oxidation, whether partial surface oxidized iron particles can improve the microwave absorbing performance is rarely concerned. In order to explore the effect of partial surface oxidation of iron on its properties, the designed yolk—shelled (Fe/FeOx)@C composites with multiple heterointerfaces were synthesized via an in-situ polymerization and a finite reduction-oxidation process of Fe2O3 ellipsoids. The performance enhancement mechanisms of Fe/FeOx heterointerfaces were also elaborated. It is demonstrated that the introduction of Fe-based heterogeneous interfaces can not only enhance the dielectric loss, but also increase the imaginary part of the permeability in the higher frequency range to strengthen the magnetic loss ability. Meanwhile, the yolk—shell structure can effectively improve impedance matching and enhance microwave absorption performances via increasing multiple reflection and scattering behaviors of incident microwaves. Compared to Fe@C composite, the effective absorption (reflection loss (RL) < −10 dB) bandwidth of the optimized (Fe/FeOx)@C-2 increases from 5.7 to 7.3 GHz (10.7–18.0 GHz) at a same matching thickness of 2 mm, which can completely cover Ku-band. This work offers a good perspective for the enhancement of magnetic loss ability and microwave absorption performance of Fe-based microwave absorption materials with promising practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

    CAS  Google Scholar 

  2. Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628.

    CAS  Google Scholar 

  3. Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

    CAS  Google Scholar 

  4. Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

    CAS  Google Scholar 

  5. Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

    Google Scholar 

  6. Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

    CAS  Google Scholar 

  7. Li, H.; Bao, S. S.; Li, Y. M.; Huang, Y. Q.; Chen, J. Y.; Zhao, H.; Jiang, Z. Y.; Kuang, Q.; Xie, Z. X. Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk—shell structures. ACS Appl. Mater. Interfaces 2018, 10, 28839–28849.

    CAS  Google Scholar 

  8. Gai, L. X.; Zhao, H. H.; Wang, F. Y.; Wang, P.; Liu, Y. L.; Han, X. J.; Du, Y. C. Advances in core-shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439.

    Google Scholar 

  9. Li, X. A.; Du, D. X.; Wang, C. S.; Wang, H. Y.; Xu, Z. P. In situ synthesis of hierarchical rose-like porous Fe@C with enhanced electromagnetic wave absorption. J. Mater. Chem. C 2018, 6, 558–567.

    CAS  Google Scholar 

  10. Zhou, X. D.; Han, H.; Wang, Y. C.; Zhang, C.; Lv, H. L.; Lou, Z. C. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 121, 199–206.

    CAS  Google Scholar 

  11. Qing, Y. C.; Zhou, W. C.; Jia, S.; Luo, F.; Zhu, D. M. Microwave electromagnetic property of SiO2-coated carbonyl iron particles with higher oxidation resistance. Phys. B Condens. Matter 2011, 406, 777–780.

    CAS  Google Scholar 

  12. Liu, G.; Wang, L. Y.; Yang, Z. H.; Wu, R. B. Synthesis of iron-based hexagonal microflakes for strong microwave attenuation. J. Alloys Compd. 2017, 718, 46–52.

    CAS  Google Scholar 

  13. Javid, M.; Zhou, Y. L.; Zhou, T. H.; Wang, D. X.; Zhou, L.; Shah, A.; Duan, Y. P.; Dong, X. L.; Zhang, Z. D. In-situ fabrication of Fe@ZrO2 nanochains for the heat-resistant electromagnetic wave absorber. Mater. Lett. 2019, 242, 199–202.

    CAS  Google Scholar 

  14. Duan, W. J.; Li, X. D.; Wang, Y.; Qiang, R.; Tian, C. H.; Wang, N.; Han, X. J.; Du, Y. C. Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties. Appl. Surf. Sci. 2018, 427, 594–602.

    CAS  Google Scholar 

  15. Wang, Y. C.; Wang, W. L.; Sun, J.; Sun, C. G.; Feng, Y. K.; Li, Z. Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance. Carbon 2018, 135, 1–11.

    Google Scholar 

  16. Manna, P. K.; Yusuf, S. M. Two interface effects: Exchange bias and magnetic proximity. Phys. Rep. 2014, 535, 61–99.

    Google Scholar 

  17. Nogués, J.; Sort, J.; Langlais, V.; Skumryev, V.; Suriñach, S.; Muñoz, J. S.; Baró, M. D. Exchange bias in nanostructures. Phys. Rep. 2005, 422, 65–117.

    Google Scholar 

  18. Li, X. A.; Qu, X. Y.; Xu, Z.; Dong, W. Q.; Wang, F. Y.; Guo, W. C.; Wang, H. Y.; Du, Y. C. Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl. Mater. Interfaces 2019, 11, 19267–19276.

    CAS  Google Scholar 

  19. Chen, F.; Luo, H.; Cheng, Y. Z.; Liu, J. L.; Wang, X.; Gong, R. Z. Fe/Fe3O4@N-doped carbon hexagonal plates decorated with Ag nanoparticles for microwave absorption. ACS Appl. Nano Mater. 2019, 2, 7266–7278.

    CAS  Google Scholar 

  20. Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

    CAS  Google Scholar 

  21. Liu, Q. C.; Zi, Z. F.; Zhang, M.; Pang, A. B.; Dai, J. M.; Sun, Y. P. Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method. J. Alloys Compd. 2013, 561, 65–70.

    CAS  Google Scholar 

  22. Wang, X. L.; Geng, Q. Y.; Shi, G. M.; Xu, G.; Yu, J.; Guan, Y. Y.; Zhang, Y. J.; Li, D. One-pot solvothermal synthesis of Fe/Fe3O4 composites with broadband microwave absorption. J. Alloys Compd. 2019, 803, 818–825.

    CAS  Google Scholar 

  23. Xu, C. Y.; Liu, P. B.; Wu, Z. C.; Zhang, H. B.; Zhang, R. X.; Zhang, C.; Wang, L.; Wang, L. Y.; Yang, B. T.; Yang, Z. Q. et al. Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 2022, 9, 2200804.

    CAS  Google Scholar 

  24. Sun, D. P.; Zou, Q.; Wang, Y. P.; Wang, Y. J.; Jiang, W.; Li, F. S. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 2014, 6, 6557–6562.

    CAS  Google Scholar 

  25. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    CAS  Google Scholar 

  26. Chen, N.; Dong, Z.; Wang, X. Y.; Guan, Z. J.; Jiang, J. T.; Wang, K. J. Construction of FeNi3 and core-shell structured FeNi3@C microspheres toward broadband electromagnetic wave absorbing. Appl. Surf. Sci. 2022, 603, 154337.

    CAS  Google Scholar 

  27. Mao, R. J.; Bao, S. S.; Li, Q. S.; Yuan, Y. S.; Liang, Z. H.; Zhang, M. X.; Jiang, Z. Y.; Xie, Z. X. Rational design of two-dimensional flaky Fe/void/C composites for enhanced microwave absorption properties. Dalton Trans. 2022, 51, 8705–8713.

    CAS  Google Scholar 

  28. Bao, S. S.; Song, Z. J.; Mao, R. J.; Li, Y.; Zhang, S. H.; Jiang, Z. Y.; Li, X. A.; Xie, Z. X. Synthesis of hollow rod-like hierarchical structures assembled by CoFe/C nanosheets for enhanced microwave absorption. J. Mater. Chem. C 2021, 9, 13860–13868.

    CAS  Google Scholar 

  29. Dong, W. Q.; Li, X. A.; Tang, H. M.; Shi, K.; Wang, C. S.; Guo, W. C.; Tian, K. S.; Wang, H. Y. Electromagnetic attenuation distribution in a three-dimensional amorphous carbon matrix with highly dispersed Fe/Fe3C@graphite-C nanoparticles. Mater. Des. 2022, 216, 110528.

    CAS  Google Scholar 

  30. Liu, Y.; Li, Y. N.; Jiang, K. D.; Tong, G. X.; Lv, T. X.; Wu, W. H. Controllable synthesis of elliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption. J. Mater. Chem. C 2016, 4, 7316–7323.

    CAS  Google Scholar 

  31. Zhou, T. D.; Zhou, P. H.; Liang, D. F.; Deng, L. J. Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt-quenching. J. Alloys Compd. 2009, 484, 545–549.

    CAS  Google Scholar 

  32. Liu, X.; Qiao, L.; Li, F. S. Microwave properties in relation to magnetic anisotropy of the Nd(Fe1−xCox)10V2 system. J. Phys. D: Appl. Phys. 2010, 43, 165004.

    Google Scholar 

  33. Gao, S. T.; Zhang, Y. C.; Xing, H. L.; Li, H. X. Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 2020, 387, 124149.

    CAS  Google Scholar 

  34. Liu, L.; He, Z. D.; Zhao, Y. T.; Sun, J. C.; Tong, G. X. Modulation of the composition and surface morphology of expanded graphite/Fe/Fe3O4 composites for plasmon resonance-enhanced microwave absorption. J. Alloys Compd. 2018, 765, 1218–1227.

    CAS  Google Scholar 

  35. Liu, Y.; Fu, Y. W.; Liu, L.; Li, W.; Guan, J. G.; Tong, G. X. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl. Mater. Interfaces 2018, 10, 16511–16520.

    CAS  Google Scholar 

  36. Park, J. H.; Lee, S.; Chul Ro, J.; Suh, S. J. Yolk-shell Fe-Fe3O4@C nanoparticles with excellent reflection loss and wide bandwidth as electromagnetic wave absorbers in the high-frequency band. Appl. Surf. Sci. 2022, 573, 151469.

    CAS  Google Scholar 

  37. Guan, Z. J.; Jiang, J. T.; Yan, S. J.; Sun, Y. M.; Zhen, L. Sandwich-like cobalt/reduced graphene oxide/cobalt composite structure presenting synergetic electromagnetic loss effect. J. Colloid Interface Sci. 2020, 561, 687–695.

    CAS  Google Scholar 

  38. Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4, nanotube with wide microwave absorption frequency. Nano Res. 2022, 15, 6743–6750.

    CAS  Google Scholar 

  39. Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

    CAS  Google Scholar 

  40. Wang, H.; Guo, H. H.; Dai, Y. Y.; Geng, D. Y.; Han, Z.; Li, D.; Yang, T.; Ma, S.; Liu, W.; Zhang, Z. D. Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Appl. Phys. Lett. 2012, 101, 083116.

    Google Scholar 

  41. Zhang, Z. Y.; Liu, X. X.; Wang, X. J.; Wu, Y. P.; Liu, Y. Electromagnetic and microwave absorption properties of Fe-Sr0.8La0.2Fe11.8Co0.2O19 shell—core composites. J. Magn. Magn. Mater. 2012, 324, 2177–2182.

    CAS  Google Scholar 

  42. Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Luo, J. H. Metal-organic polymer coordination materials derived Co/N-Doped porous carbon composites for frequency-selective microwave absorption. Compos. B Eng. 2020, 202, 108406.

    CAS  Google Scholar 

  43. Zhu, X. J.; Dong, Y. Y.; Pan, F.; Xiang, Z.; Liu, Z. C.; Deng, B. W.; Zhang, X.; Shi, Z.; Lu, W. Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 2021, 25, 100731.

    Google Scholar 

  44. Wei, H. Y.; Zhang, Z. P.; Hussain, G.; Zhou, L. S.; Li, Q.; Ostrikov, K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596.

    Google Scholar 

  45. Li, X. A.; Dong, W. Q.; Zhang, C.; Guo, W. C.; Wang, C. S.; Li, Y. M.; Wang, H. Y. Leaf-like Fe/C composite assembled by iron veins interpenetrated into amorphous carbon lamina for high-performance microwave absorption. Compos. Part A: Appl. Sci. Manuf. 2021, 140, 106202.

    CAS  Google Scholar 

  46. Li, X. P.; Deng, Z. M.; Li, Y.; Zhang, H. B.; Zhao, S.; Zhang, Y.; Wu, X. Y.; Yu, Z. Z. Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption. Carbon 2019, 147, 172–181.

    CAS  Google Scholar 

  47. Zhang, X. F.; Dong, X. L.; Huang, H.; Liu, Y. Y.; Wang, W. N.; Zhu, X. G.; Lv, B.; Lei, J. P.; Lee, C. G. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 2006, 89, 053115.

    Google Scholar 

  48. Zhang, H. Y.; Cao, F.; Xu, H.; Tian, W.; Pan, Y.; Mahmood, N.; Jian, X. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 2023, 16, 645–653.

    CAS  Google Scholar 

  49. Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2691.

    CAS  Google Scholar 

  50. Han, Z.; Li, D.; Wang, H.; Liu, X. G.; Li, J.; Geng, D. Y.; Zhang, Z. D. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl. Phys. Lett. 2009, 95, 023114.

    Google Scholar 

  51. Bao, S. S.; Tang, W.; Song, Z. J.; Jiang, Q. R.; Jiang, Z. Y.; Xie, Z. X. Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale 2020, 12, 18790–18799.

    CAS  Google Scholar 

  52. Ma, W. J.; He, P.; Wang, T. Y.; Xu, J.; Liu, X. Y.; Zhuang, Q. X.; Cui, Z. K.; Lin, S. L. Microwave absorption of carbonization temperature-dependent uniform yolk—shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.

    CAS  Google Scholar 

  53. Li, J.; Wang, L.; Zhang, D.; Qu, Y.; Wang, G. M.; Tian, G.; Liu, A. H.; Yue, H. J.; Feng, S. H. Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers. Mater. Chem. Front. 2017, 1, 1786–1794.

    CAS  Google Scholar 

  54. Wang, J. Y.; Wang, Z. H.; Liu, R. G.; Li, Y. X.; Zhao, X. N.; Zhang, X. F. Heterogeneous interfacial polarization in Fe@ZnO nanocomposites induces high-frequency microwave absorption. Mater. Lett. 2017, 209, 276–279.

    CAS  Google Scholar 

  55. Feng, A. L.; Jia, Z. R.; Zhao, Y.; Lv, H. L. Development of Fe/Fe3O4@C composite with excellent electromagnetic absorption performance. J. Alloys Compd. 2018, 745, 547–554.

    CAS  Google Scholar 

  56. Meng, F. B.; Wei, W.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Wang, Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

    CAS  Google Scholar 

  57. Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic—dielectric synergy and interfacial engineering to design yolk—shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

    CAS  Google Scholar 

  58. Li, N.; Huang, G. W.; Li, Y. Q.; Xiao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

    CAS  Google Scholar 

  59. Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540–10547.

    CAS  Google Scholar 

  60. You, W. B.; Che, R. C. Excellent NiO-Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 2018, 10, 15104–15111.

    CAS  Google Scholar 

  61. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

    CAS  Google Scholar 

  62. Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk-shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

    CAS  Google Scholar 

  63. Yao, L. H.; Cao, W. Q.; Zhao, J. G.; Zheng, Q.; Wang, Y. C.; Jiang, S.; Pan, Q. L.; Song, J.; Zhu, Y. Q.; Cao, M. S. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol. 2022, 127, 48–60.

    CAS  Google Scholar 

  64. Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 2021, 184, 136–145.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771151 and 21931009) and the Natural Science Foundation of Fujian Province of China (No. 2022J01042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Jiang.

Electronic Supplementary Material

12274_2023_5511_MOESM1_ESM.pdf

A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, L., Bao, S. et al. A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules. Nano Res. 16, 11084–11095 (2023). https://doi.org/10.1007/s12274-023-5511-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5511-7

Keywords

Navigation