Skip to main content
Log in

Photonic crystals constructed by isostructural metal-organic framework films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal-organic framework (MOF)-on-MOF structure allows stacking various types of MOFs with different lattice constants for molecule sieving or filtering. However, the multilayered MOFs-based optical devices have incoherent interference due to the lattice-mismatch at the interface and refractive index (RI) indifference. This paper reports isostructural MOFs-based photonic crystals (PCs) designed by stacking Bragg bilayers of lattice-matched MOFs thin films through a layer-by-layer assembly method. Colloidal nanoparticles (NPs) were homogenously encapsulated in some layers of the MOFs (HKUST-1@NPs) to tune their intrinsic RI during the spraying coating process. The isostructural MOFs-based PCs were constructed on a large scale by sequentially spraying coating the low RI layer of HKUST-1 and high RI layer of HKUST-1@NPs to form the desired number of Bragg bilayers. X-ray photoelectron spectroscopy (XPS) depth profiling proved the Bragg bilayers and the homogenous encapsulation of nanomaterials in certain layers of MOFs. Bandwidth of the PCs was tailored by the thickness and RI of the Bragg bilayers, which had a great consistent with finite difference time domain (FDTD) simulation. Importantly, reflectivity of the isostructural MOFs-based PCs was up to 96%. We demonstrated high detection sensitivity for chemical sensing on the PCs, which could be advanced by encapsulating different types of nanomaterials and designing wide-band isostructural MOFs-based PCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodling, A. E.; Nagelberg, S.; Kaehr, B.; Meredith, C. H.; Cheon, S. I.; Saunders, A. P.; Kolle, M.; Zarzar, L. D. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 2019, 566, 523–527.

    CAS  Google Scholar 

  2. Datta, B.; Spero, E. F.; Martin-Martinez, F. J.; Ortiz, C. Socially-directed development of materials for structural color. Adv. Mater. 2022, 34, 2100939.

    CAS  Google Scholar 

  3. Wang, Z. J.; Dai, C. J.; Zhang, J.; Wang, D. D.; Shi, Y. Y.; Wang, X. Y.; Zheng, G. X.; Zhang, X. F.; Li, Z. Y. Real-time tunable nanoprinting-multiplexing with simultaneous meta-holography displays by stepwise nanocavities. Adv. Funct. Mater. 2022, 32, 2110022.

    CAS  Google Scholar 

  4. Dai, C. J.; Wan, C. W.; Li, Z. J.; Wang, Z.; Yang, R.; Zheng, G. X.; Li, Z. Y. Stepwise dual-Fabry—Pérot nanocavity for grayscale imaging encryption/concealment with holographic multiplexing. Adv. Opt. Mater. 2021, 9, 2100950.

    CAS  Google Scholar 

  5. Dedelaite, L.; Rodriguez, R. D.; Schreiber, B.; Ramanavicius, A.; Zahn, D. R. T.; Sheremet, E. Multiwavelength optical sensor based on a gradient photonic crystal with a hexagonal plasmonic array. Sens. Actuat. B Chem. 2020, 311, 127837.

    CAS  Google Scholar 

  6. Wu, S. L.; Xia, H. B.; Xu, J. H.; Sun, X. Q.; Liu, X. G. Manipulating luminescence of light emitters by photonic crystals. Adv. Mater. 2018, 30, 1803362.

    Google Scholar 

  7. Li, M. M.; Lyu, Q.; Peng, B. L.; Chen, X. D.; Zhang, L. B.; Zhu, J. T. Bioinspired colloidal photonic composites: Fabrications and emerging applications. Adv. Mater. 2022, 2110488.

    Google Scholar 

  8. Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580.

  9. Periasamy, P.; Guthrey, H. L.; Abdulagatov, A. I.; Ndione, P. F.; Berry, J. J.; Ginley, D. S.; George, S. M.; Parilla, P. A.; O’Hayre, R. P. Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance. Adv. Mater. 2013, 25, 1301–1308.

    CAS  Google Scholar 

  10. Hu, W. W.; Wu, W. W.; Jian, Y. Y.; Haick, H.; Zhang, G. J.; Qian, Y.; Yuan, M. M.; Yao, M. S. Volatolomics in healthcare and its advanced detection technology. Nano Res. 2022, 15, 8185–8213.

    Google Scholar 

  11. Lova, P.; Manfredi, G.; Comoretto, D. Advances in functional solution processed planar 1D photonic crystals. Adv. Opt. Mater. 2018, 6, 1800730.

    Google Scholar 

  12. Cai, Z. Y.; Li, Z. W.; Ravaine, S.; He, M. X.; Song, Y. L.; Yin, Y. D.; Zheng, H. B.; Teng, J. H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951.

    CAS  Google Scholar 

  13. Wang, K. C.; Li, Y. P.; Xie, L. H.; Li, X. Y.; Li, J. R. Construction and application of base-stable MOFs: A critical review. Chem. Soc. Rev. 2022, 51, 6417–6441.

    CAS  Google Scholar 

  14. Zhuang, Z. Y.; Liu, D. X. Conductive MOFs with photophysical properties: Applications and thin-film fabrication. Nano-Micro Lett. 2020, 12, 132.

    CAS  Google Scholar 

  15. Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 2018, 30, 1704501.

    Google Scholar 

  16. DeCoster, M. E.; Babaei, H.; Jung, S. S.; Hassan, Z. M.; Gaskins, J. T.; Giri, A.; Tiernan, E. M.; Tomko, J. A.; Baumgart, H.; Norris, P. M. et al. Hybridization from guest—host interactions reduces the thermal conductivity of metal-organic frameworks. J. Am. Chem. Soc. 2022, 144, 3603–3613.

    CAS  Google Scholar 

  17. Burtch, N. C.; Heinen, J.; Bennett, T. D.; Dubbeldam, D.; Allendorf, M. D. Mechanical properties in metal-organic frameworks: Emerging opportunities and challenges for device functionality and technological applications. Adv. Mater. 2018, 30, 1704124.

    Google Scholar 

  18. Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

    Google Scholar 

  19. Li, D. J.; Li, Q. H.; Wang, Z. R.; Ma, Z. Z.; Gu, Z. G.; Zhang, J. Interpenetrated metal-porphyrinic framework for enhanced nonlinear optical limiting. J. Am. Chem. Soc. 2021, 143, 17162–17169.

    CAS  Google Scholar 

  20. Ma, Z. Z.; Li, Q. H.; Wang, Z. R.; Gu, Z. G.; Zhang, J. Electrically regulating nonlinear optical limiting of metal-organic framework film. Nat. Commun. 2022, 13, 6347.

    CAS  Google Scholar 

  21. Li, Z. H.; Liu, J. X.; Feng, L.; Liu, X.; Xu, Y. D.; Zhou, F.; Liu, W. M. Coupling tandem MOFs in metal-insulator-metal resonator advanced chemo-sieving sensing. Nano Today 2023, 48, 101726.

    CAS  Google Scholar 

  22. Li, Z. H.; Liu, J. X.; Feng, L.; Pan, Y.; Tang, J.; Li, H.; Cheng, G. H.; Li, Z. Y.; Shi, J. Q.; Xu, Y. D. et al. Monolithic MOF-based metal-insulator-metal resonator for filtering and sensing. Nano Lett., in press, https://doi.org/10.1021/acs.nanolett.2c04428.

  23. Liu, J. X.; Redel, E.; Walheim, S.; Wang, Z. B.; Oberst, V.; Liu, J. X.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T. et al. Monolithic high performance surface anchored metal-organic framework bragg reflector for optical sensing. Chem. Mater. 2015, 27, 1991–1996.

    CAS  Google Scholar 

  24. Jian, Y. Y.; Hu, W. W.; Zhao, Z. H.; Cheng, P. F.; Haick, H.; Yao, M. S.; Wu, W. W. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 2020, 12, 71.

    CAS  Google Scholar 

  25. Kou, D. H.; Ma, W.; Zhang, S. F.; Li, R.; Zhang, Y. BTEX vapor detection with a flexible MOF and functional polymer by means of a composite photonic crystal. ACS Appl. Mater. Interfaces 2020, 12, 11955–11964.

    CAS  Google Scholar 

  26. Kim, J. Y.; Lee, S. H.; Do, Y. S. Optimized structure for a moisture-sensitive colorimetric sensor utilizing photonic crystals based on a metal-organic framework. IEEE Access 2019, 7, 85483–85491.

    Google Scholar 

  27. Deng, Y. F.; Sun, J. X.; Jin, H.; Khatib, M.; Li, X. H.; Wei, Z. S.; Wang, F.; Horev, Y. D.; Wu, W. W.; Haick, H. Chemically modified polyaniline for the detection of volatile biomarkers of minimal sensitivity to humidity and bending. Adv. Healthcare Mater. 2018, 7, 1800232.

    Google Scholar 

  28. Wang, Z. B.; Liu, J. X.; Lukose, B.; Gu, Z. G.; Weidler, P. G.; Gliemann, H.; Heine, T.; Wöll, C. Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal-organic frameworks. Nano Lett. 2014, 14, 1526–1529.

    CAS  Google Scholar 

  29. Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem., Int. Ed. 2019, 58, 14915–14919.

    CAS  Google Scholar 

  30. Haldar, R.; Wöll, C. Hierarchical assemblies of molecular frameworks-MOF-on-MOF epitaxial heterostructures. Nano Res. 2021, 14, 355–368.

    CAS  Google Scholar 

  31. Huang, L. Y.; Lambrecht, W. R. L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 2013, 88, 165203.

    Google Scholar 

  32. Jiang, B.; Yuan, Y. F.; Wang, W.; He, K.; Zou, C.; Chen, W.; Yang, Y.; Wang, S.; Yurkiv, V.; Lu, J. Surface lattice engineering for fine-tuned spatial configuration of nanocrystals. Nat. Commun. 2021, 12, 5661.

    CAS  Google Scholar 

  33. Zhang, J. Q.; Yang, J.; Dai, R. Y.; Sheng, W. P.; Su, Y.; Zhong, Y.; Li, X.; Tan, L. C.; Chen, Y. W. Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 2022, 12, 2103674.

    CAS  Google Scholar 

  34. Li, J.; Xue, L. J.; Wang, Z.; Han, Y. C. Colloidal photonic crystals with a graded lattice-constant distribution. Colloid Polym. Sci. 2007, 285, 1037–1041.

    CAS  Google Scholar 

  35. Su, A. Effect of lattice constants on transmission spectra of photonic crystal quantum well. Infrared Laser Eng. 2013, 42, 200–205.

    Google Scholar 

  36. Luo, W.; Yan, J. D.; Tan, Y. L.; Ma, H. R.; Guan, J. G. Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant. Nanoscale 2017, 9, 9548–9555.

    CAS  Google Scholar 

  37. Liu, J. X.; Wang, W. J.; Wang, D. Q.; Hu, J. T.; Ding, W. D.; Schaller, R. D.; Schatz, G. C.; Odom, T. W. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proc. Natl. Acad. Sci. USA 2019, 116, 5925–5930.

    CAS  Google Scholar 

  38. Chen, D. H.; Haldar, R.; Neumeier, B. L.; Fu, Z. H.; Feldmann, C.; Wöll, C.; Redel, E. Tunable emission in heteroepitaxial Ln-SURMOFs. Adv. Funct. Mater. 2019, 29, 1903086.

    Google Scholar 

  39. Li, Z. H.; Liu, J. X.; Yi, X. B.; Wu, W.; Li, F. F.; Zhu, Z. K.; Li, H. Q.; Shi, J. Q.; Xu, Y. D.; Zhou, F. et al. Metal-organic frameworks-based Fabry—Pérot cavity encapsulated TiO2 nanoparticles for selective chemical sensing. Adv. Funct. Mater. 2022, 32, 2109541.

    CAS  Google Scholar 

  40. Ma, S.; Ahn, J.; Oh, Y.; Kwon, H. C.; Lee, E.; Kim, K.; Yun, S. C.; Moon, J. Facile sol-gel-derived craterlike dual-functioning TiO2 electron transport layer for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 14649–14658.

    CAS  Google Scholar 

  41. Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem., Int. Ed. 2018, 57, 6054–6059.

    CAS  Google Scholar 

  42. Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

    Google Scholar 

  43. Lin, Y. H.; Wang, D. Q.; Hu, J. T.; Liu, J. X.; Wang, W. J.; Guan, J.; Schaller, R. D.; Odom, T. W. Engineering symmetry-breaking nanocrescent arrays for nanolasing. Adv. Funct. Mater. 2019, 29, 1904157.

    CAS  Google Scholar 

  44. Von Mankowski, A.; Szendrei-Temesi, K.; Koschnick, C.; Lotsch, B. V. Improving analyte selectivity by post-assembly modification of metal-organic framework based photonic crystal sensors. Nanoscale Horiz. 2018, 3, 383–390.

    CAS  Google Scholar 

  45. Szendrei-Temesi, K.; Jiménez-Solano, A.; Lotsch, B. V. Tracking molecular diffusion in one-dimensional photonic crystals. Adv. Mater. 2018, 30, 1803730.

    Google Scholar 

  46. Xing, Y. Z.; Shi, L. X.; Yan, J.; Chen, Y. L. High-performance methanal sensor based on metal-organic framework based one-dimensional photonic crystal. ChemistrySelect 2020, 5, 3946–3952.

    CAS  Google Scholar 

  47. Zhang, Z. J.; Müller, K.; Heidrich, S.; Koenig, M.; Hashem, T.; Schlöder, T.; Bléger, D.; Wenzel, W.; Heinke, L. Light-switchable one-dimensional photonic crystals based on MOFs with photomodulatable refractive index. J. Phys. Chem. Lett. 2019, 10, 6626–6633.

    CAS  Google Scholar 

  48. Gilbert, J. B.; Luo, M.; Shelton, C. K.; Rubner, M. F.; Cohen, R. E.; Epps III, T. H. Determination of lithium-ion distributions in nanostructured block polymer electrolyte thin films by X-ray photoelectron spectroscopy depth profiling. ACS Nano 2015, 9, 512–520.

    CAS  Google Scholar 

  49. Zhou, H.; Hui, X. D.; Li, D. X.; Hu, D. L.; Chen, X.; He, X. M.; Gao, L. X.; Huang, H.; Lee, C. K.; Mu, X. J. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Adv. Sci. (Weinh.) 2020, 7, 2001173.

    CAS  Google Scholar 

  50. Song, D. P.; Li, C.; Li, W. H.; Watkins, J. J. Block copolymer nanocomposites with high refractive index contrast for one-step photonics. ACS Nano 2016, 10, 1216–1223.

    CAS  Google Scholar 

  51. Zhao, W. B.; Du, M. R.; Liu, K. K.; Zhou, R.; Ma, R. N.; Jiao, Z.; Zhao, Q.; Shan, C. X. Hydrophilic ZnO nanoparticles@calcium alginate composite for water purification. ACS Appl. Mater. Interfaces 2020, 12, 13305–13315.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors declare no conflict of interest. The authors thank for the financial support from the National Natural Science Foundations of China (No. 52071270), the Key Research and Development Program of Shaanxi Province (No. 2021GY-232), the Research Fund of the State Key Laboratory of Solidification Processing (NPU) (No. 2022-QZ-04), Doctor Dissertation of Northwestern Polytechnical University (No. CX2022029), and the National Key Research and Development Program of China (No. 2022YFB3808600). We thank the Analytical & Testing Center of Northwestern Polytechnical University and Shanxi Materials Analysis and Research Center. All data are available in the main text or supplementary materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, J., Wu, H. et al. Photonic crystals constructed by isostructural metal-organic framework films. Nano Res. 16, 9569–9576 (2023). https://doi.org/10.1007/s12274-023-5505-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5505-5

Keywords

Navigation