Skip to main content
Log in

Modulator-directed assembly of hybrid composites based on metal-organic frameworks and upconversion nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hybrid composites made of metal-organic frameworks (MOFs) and lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable interest for their synergistically enhanced functions in various applications such as chemical sensing, photocatalysis, anticounterfeiting and nanomedicine. However, precise assembly of MOF/UCNP hybrid composites with tunable morphologies remains a challenge due to the lack of effective synthetic methods and fundamental understanding of the growth mechanisms. Herein, we propose a modulator-directed assembly strategy to synthesize a series of ZIF-8@UCNP composites (ZIF-8 = zeolitic imidazolate framework-8). The UCNPs densely paved on the surface of ZIF-8 microcrystals and endowed the composites with intense upconversion blue emission, which were verified by steady-state/transient photoluminescence (PL) spectroscopy and single-particle imaging. Ethylenediamine (EDA) was firstly used as a modulator to fine-tune the predominant MOF facets and realized distinct morphologies of the composites. By adjusting the concentration of EDA from 0 to 25 mmol/L, the morphology of the ZIF-8@UCNP composites was tuned from rhombic dodecahedron (RD) to truncated rhombic dodecahedron (TRD), cube with truncated edges (CTE), cube, and finally a unique form of interpenetration twins (IT). The nucleation and growth process of the ZIF-8@UCNP composites was monitored by time-dependent scanning electron microscopy (SEM) images and the formation mechanism was thoroughly revealed. Furthermore, we demonstrated that the strategy for assembly of morphology-controllable ZIF-8@UCNP composites was generally applicable to various UCNPs with different sizes and shapes. The proposed strategy is expected to open up new avenues for the controllable synthesis of MOF/UCNP composites toward diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitagawa, S.; Matsuda, R. Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev. 2007, 251, 2490–2509.

    Article  CAS  Google Scholar 

  2. Yaghi, O. M.; Li, G. M.; Li, H. L. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703–706.

    Article  CAS  Google Scholar 

  3. Jaramillo, D. E.; Reed, D. A.; Jiang, H. Z. H.; Oktawiec, J.; Mara, M. W.; Forse, A. C.; Lussier, D. J.; Murphy, R. A.; Cunningham, M.; Colombo, V. et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites. Nat. Mater. 2020, 19, 517–521.

    Article  CAS  Google Scholar 

  4. Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.

    Article  CAS  Google Scholar 

  5. Chen, Z. J.; Li, P. H.; Anderson, R.; Wang, X. J.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297–303.

    Article  CAS  Google Scholar 

  6. Hu, Y. H.; Zhang, L. Hydrogen storage in metal-organic frameworks. Adv. Mater. 2010, 22, E117–E130.

    Article  CAS  Google Scholar 

  7. Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

    Article  Google Scholar 

  8. Li, R.; Zhang, W.; Zhou, K. Metal-organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 2018, 30, e1705512.

    Article  Google Scholar 

  9. Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.

    Article  CAS  Google Scholar 

  10. Chen, L.; Ye, J. W.; Wang, H. P.; Pan, M.; Yin, S. Y.; Wei, Z. W.; Zhang, L. Y.; Wu, K.; Fan, Y. N.; Su, C. Y. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat. Commun. 2017, 8, 15985.

    Article  CAS  Google Scholar 

  11. Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

    Article  Google Scholar 

  12. Sun, Y. J.; Zheng, L. W.; Yang, Y.; Qian, X.; Fu, T.; Li, X. W.; Yang, Z. Y.; Yan, H.; Cui, C.; Tan, W. H. Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 103.

    Article  CAS  Google Scholar 

  13. Sindoro, M.; Yanai, N.; Jee, A. Y.; Granick, S. Colloidal-sized metal-organic frameworks: Synthesis and applications. Acc. Chem. Res. 2014, 47, 459–469.

    Article  CAS  Google Scholar 

  14. Feng, L.; Wang, K. Y.; Powell, J.; Zhou, H. C. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019, 1, 801–824.

    Article  Google Scholar 

  15. Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.

    Article  CAS  Google Scholar 

  16. Yanai, N.; Sindoro, M.; Yan, J.; Granick, S. Electric field-induced assembly of monodisperse polyhedral metal-organic framework crystals. J. Am. Chem. Soc. 2013, 135, 34–37.

    Article  CAS  Google Scholar 

  17. Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 2011, 27, 15261–15267.

    Article  CAS  Google Scholar 

  18. Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.

    Article  CAS  Google Scholar 

  19. Tsai, H.; Shrestha, S.; Vilá, R. A.; Huang, W. X.; Liu, C. M.; Hou, C. H.; Huang, H. H.; Wen, X. W.; Li, M. X.; Wiederrecht, G. et al. Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks. Nat. Photon. 2021, 15, 843–849.

    Article  Google Scholar 

  20. Zhang, M. Y.; Li, J. K.; Wang, R.; Zhao, S. N.; Zang, S. Q.; Mak, T. C. W. Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. (Weinh) 2021, 8, 2101884.

    Article  CAS  Google Scholar 

  21. Wang, Z.; Zhu, C. Y.; Mo, J. T.; Fu, P. Y.; Zhao, Y. W.; Yin, S. Y.; Jiang, J. J.; Pan, M.; Su, C. Y. White-light emission from dual-way photon energy conversion in a dye-encapsulated metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 9752–9757.

    Article  CAS  Google Scholar 

  22. Goldschmidt, J. C.; Fischer, S. Upconversion for photovoltaics—A review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510–535.

    Article  CAS  Google Scholar 

  23. Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2011, 9, 2415.

    Article  Google Scholar 

  24. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

    Article  CAS  Google Scholar 

  25. Zhu, X. H.; Zhang, J.; Liu, J. L.; Zhang, Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications. Adv. Sci. 2019, 6, 1901358.

    Article  CAS  Google Scholar 

  26. Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for superresolution nanoscopy. Nature 2017, 543, 229–233.

    Article  CAS  Google Scholar 

  27. Zhan, Q. Q.; Liu, H. C.; Wang, B. J.; Wu, Q. S.; Pu, R.; Zhou, C.; Huang, B. R.; Peng, X. Y.; Ågren, H.; He, S. L. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1058.

    Article  Google Scholar 

  28. Ke, J. X.; Lu, S.; Li, Z.; Shang, X. Y.; Li, X. J.; Li, R. F.; Tu, D. T.; Chen, Z.; Chen, X. Y. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 2020, 13, 1955–1961.

    Article  CAS  Google Scholar 

  29. Lu, S.; Tu, D. T.; Li, X. J.; Li, R. F.; Chen, X. Y. A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Res. 2016, 9, 187–197.

    Article  CAS  Google Scholar 

  30. Li, Y. T.; Tang, J. L.; He, L. C.; Liu, Y.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 2015, 27, 4075–4080.

    Article  CAS  Google Scholar 

  31. Li, Y. F.; Di, Z. H.; Gao, J. H.; Cheng, P.; Di, C. Z.; Zhang, G.; Liu, B.; Shi, X. H.; Sun, L. D.; Li, L. L. et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 13804–13810.

    Article  CAS  Google Scholar 

  32. Li, D. D.; Yu, S. H.; Jiang, H. L. From UV to near-infrared light-responsive metal-organic framework composites: Plasmon and upconversion enhanced photocatalysis. Adv. Mater. 2018, 30, 1707377.

    Article  Google Scholar 

  33. Li, Z. H.; Gao, H. J.; Shen, R. C.; Zhang, C. X.; Li, L. S.; Lv, Y. W.; Tang, L. M.; Du, Y. P.; Yuan, Q. Facet selectivity guided assembly of nanoarchitectures onto two-dimensional metal-organic framework nanosheets. Angew. Chem., Int. Ed. 2021, 60, 17564–17569.

    Article  CAS  Google Scholar 

  34. Deng, K. R.; Hou, Z. Y.; Li, X. J.; Li, C. X.; Zhang, Y. X.; Deng, X. R.; Cheng, Z. Y.; Lin, J. Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci. Rep. 2015, 5, 7851.

    Article  CAS  Google Scholar 

  35. Hao, C. L.; Wu, X. L.; Sun, M. Z.; Zhang, H. Y.; Yuan, A. M.; Xu, L. G.; Xu, C. L.; Kuang, H. Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 2019, 141, 19373–19378.

    Article  CAS  Google Scholar 

  36. He, L. C.; Brasino, M.; Mao, C. C.; Cho, S.; Park, W.; Goodwin, A. P.; Cha, J. N. DNA-assembled core-satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy. Small 2017, 13, 1700504.

    Article  Google Scholar 

  37. Shao, Y. L.; Liu, B.; Di, Z. H.; Zhang, G.; Sun, L. D.; Li, L. L.; Yan, C. H. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 3939–3946.

    Article  CAS  Google Scholar 

  38. Liu, Q.; Wu, B.; Li, M. Y.; Huang, Y. Y.; Li, L. L. Heterostructures made of upconversion nanoparticles and metal-organic frameworks for biomedical applications. Adv. Sci. (Weinh.) 2022, 9, 2103911.

    CAS  Google Scholar 

  39. Jena, H. S.; Rijckaert, H.; Krishnaraj, C.; Van Driessche, I.; Van Der Voort, P.; Kaczmarek, A. M. Hybrid nanocomposites formed by lanthanide nanoparticles in Zr-MOF for local temperature measurements during catalytic reactions. Chem. Mater. 2021, 33, 8007–8017.

    Article  CAS  Google Scholar 

  40. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  CAS  Google Scholar 

  41. Li, Y. T.; Liu, J. M.; Wang, Z. C.; Jin, J.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging. Adv. Mater. 2020, 32, 1907718.

    Article  CAS  Google Scholar 

  42. Liu, Y.; Yang, Y.; Sun, Y. J.; Song, J. B.; Rudawski, N. G.; Chen, X. Y.; Tan, W. H. Ostwald ripening-mediated grafting of metal-organic frameworks on a single colloidal nanocrystal to form uniform and controllable MXF. J. Am. Chem. Soc. 2019, 141, 7407–7413.

    Article  CAS  Google Scholar 

  43. Yuan, Z.; Zhang, L.; Li, S. Z.; Zhang, W. N.; Lu, M.; Pan, Y.; Xie, X. J.; Huang, L.; Huang, W. Paving metal-organic frameworks with upconversion nanoparticles via self-assembly. J. Am. Chem. Soc. 2018, 140, 15507–15515.

    Article  CAS  Google Scholar 

  44. He, L. C.; Ni, Q. Q.; Mu, J.; Fan, W. P.; Liu, L.; Wang, Z. T.; Li, L.; Tang, W.; Liu, Y. J.; Cheng, Y. Y. et al. Solvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6822–6832.

    Article  CAS  Google Scholar 

  45. Cravillon, J.; Münzer, S.; Lohmeier, S. J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 2009, 21, 1410–1412.

    Article  CAS  Google Scholar 

  46. You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. Nanoscale 2018, 10, 11477–11484.

    Article  CAS  Google Scholar 

  47. He, H. L.; Liu, J. X.; Li, K.; Yin, Z.; Wang, J. W.; Luo, D.; Liu, Y. J. Linearly polarized emission from shear-induced nematic phase upconversion nanorods. Nano Lett. 2020, 20, 4204–4210.

    Article  CAS  Google Scholar 

  48. Ling, D. P.; Li, H. H.; Xi, W. S.; Wang, Z.; Bednarkiewicz, A.; Dibaba, S. T.; Shi, L. Y.; Sun, L. N. Heterodimers made of metal-organic frameworks and upconversion nanoparticles for bioimaging and pH-responsive dual-drug delivery. J. Mater. Chem. B 2020, 8, 1316–1325.

    Article  CAS  Google Scholar 

  49. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  CAS  Google Scholar 

  50. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.

    Article  CAS  Google Scholar 

  51. Zhou, W.; Wu, H.; Udovic, T. J.; Rush, J. J.; Yildirim, T. Quasi-free methyl rotation in zeolitic imidazolate framework-8. J. Phys. Chem. A 2008, 112, 12602–12606.

    Article  CAS  Google Scholar 

  52. Zhao, X. J.; Fang, X. L.; Wu, B. H.; Zheng, L. S.; Zheng, N. F. Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors. Sci. China Chem. 2014, 57, 141–146.

    Article  CAS  Google Scholar 

  53. Cravillon, J.; Schröder, C. A.; Bux, H.; Rothkirch, A.; Caro, J.; Wiebcke, M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm 2012, 14, 492–498.

    Article  CAS  Google Scholar 

  54. Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

    Article  CAS  Google Scholar 

  55. Yang, F.; Mu, H.; Wang, C. Q.; Xiang, L.; Yao, K. X.; Liu, L. M.; Yang, Y.; Han, Y.; Li, Y. S.; Pan, Y. C. Morphological map of ZIF-8 crystals with five distinctive shapes: Feature of filler in mixed-matrix membranes on C3H6/C3H8 separation. Chem. Mater. 2018, 30, 3467–3473.

    Article  CAS  Google Scholar 

  56. Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133–4144.

    Article  CAS  Google Scholar 

  57. Li, Z. K.; Qiao, X.; He, G. H.; Sun, X.; Feng, D. H.; Hu, L. F.; Xu, H.; Xu, H. B.; Ma, S. Q.; Tian, J. Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386.

    Article  CAS  Google Scholar 

  58. Zhang, D. L.; Peng, R. Z.; Liu, W. F.; Donovan, M. J.; Wang, L. L.; Ismail, I.; Li, J.; Li, J.; Qu, F. L.; Tan, W. H. Engineering DNA on the surface of upconversion nanoparticles for bioanalysis and therapeutics. ACS Nano 2021, 15, 17257–17274.

    Article  CAS  Google Scholar 

  59. Qiao, C. Q.; Zhang, R. L.; Wang, Y. D.; Jia, Q.; Wang, X. F.; Yang, Z.; Xie, T. F.; Ji, R. C.; Cui, X. F.; Wang, Z. L. Rabies virus-inspired metal-organic frameworks (MOFs) for targeted imaging and chemotherapy of Glioma. Angew. Chem., Int. Ed. 2020, 59, 16982–16988.

    Article  CAS  Google Scholar 

  60. Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemophotodynamic cancer therapy. Nano Res. 2019, 12, 1307–1312.

    Article  CAS  Google Scholar 

  61. Liu, X. Y.; Lo, W. S.; Wu, C. H.; Williams, B. P.; Luo, L. S.; Li, Y.; Chou, L. Y.; Lee, Y.; Tsung, C. K. Tuning metal-organic framework nanocrystal shape through facet-dependent coordination. Nano Lett. 2020, 20, 1774–1780.

    Article  CAS  Google Scholar 

  62. Liang, Z. Z.; Zhang, C. C.; Yuan, H. T.; Zhang, W.; Zheng, H. Q.; Cao, R. PVP-assisted transformation of a metal-organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem. Commun. 2018, 54, 7519–7522.

    Article  CAS  Google Scholar 

  63. Graf, C.; Dembski, S.; Hofmann, A.; Rühl, E. A general method for the controlled embedding of nanoparticles in silica colloids. Langmuir 2006, 22, 5604–5610.

    Article  CAS  Google Scholar 

  64. Al-Saidi, W. A.; Feng, H. J.; Fichthorn, K. A. Adsorption of polyvinylpyrrolidone on Ag surfaces: Insight into a structure-directing agent. Nano Lett. 2012, 12, 997–1001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. U1805252, 22175179, 22135008, 12174392, 21975257, and 12104456), NSF of Fujian Province (Nos. 2021I0040, 2021L3024), and the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs (CAS/SAFEA) International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingjun Li or Xueyuan Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Li, X., Lu, S. et al. Modulator-directed assembly of hybrid composites based on metal-organic frameworks and upconversion nanoparticles. Nano Res. 16, 1482–1490 (2023). https://doi.org/10.1007/s12274-022-4684-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4684-9

Keywords

Navigation