Skip to main content
Log in

A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Potassium ion-based dual-graphite batteries (KDGBs) emerge as promising devices for large-scale applications due to their high voltage, low cost, and environmental friendliness. However, conventional KPF6/carbonate-based electrolytes suffer from severe oxidation decomposition, low concentration, and flammability, which limit the capacity and cyclability of KDGBs. Herein, a nonflammable potassium bis(fluorosulfonyl)imide/triethyl phosphate (KFSI/TEP) electrolyte was designed for KDGBs. When the salt-to-solvent molar ratio increases to 1:1.3, graphite cathode operated at the cut-off potential of 5.2 V exhibits much enhanced capacity, excellent rate capability (26.4 mAh·g−1 at 1.0 A·g−1), and superior cyclability with 98% capacity retention after 350 cycles. Inorganic compounds-rich electrode/electrolyte interphase layers derived from the preferential decomposition of FSI anions ensure good compatibility of the 1:1.3 KFSI/TEP electrolyte with K metal and graphite anodes. Based on this electrolyte, asassembled KDGBs show high operation voltage of 4.3 V and good cycling performance. This work provides feasibility for developing long-life and safe-operation DGBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, K.; Jia, L. L.; Liu, X. H.; Wang, Z. J.; Wang, Y.; Li, Y. W.; Chen, H. B.; Wu, B.; Yang, L. Y.; Pan, F. Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM. Nano Res. 2020, 13, 412–418.

    CAS  Google Scholar 

  2. Liu, Y. J.; Hu, X.; Li, J. W.; Zhong, G. B.; Yuan, J.; Zhan, H. B.; Tang, Y. B.; Wen, Z. H. Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 2022, 13, 663.

    CAS  Google Scholar 

  3. Li, W. H.; Li, Y. M.; Liu, X. F.; Gu, Z. Y.; Liang, H. J.; Zhao, X. X.; Guo, J. Z.; Wu, X. L. All-climate and ultrastable dual-ion batteries with long life achieved via synergistic enhancement of cathode and anode interfaces. Adv. Funct. Mater. 2022, 32, 2201038.

    CAS  Google Scholar 

  4. Chen, S. H.; Kuang, Q.; Fan, H. J. Dual-carbon batteries: Materials and mechanism. Small 2020, 16, 2002803.

    CAS  Google Scholar 

  5. Ji, B. F.; Zhang, F.; Wu, N. Z.; Tang, Y. B. A dual-carbon battery based on potassium-ion electrolyte. Adv. Energy Mater. 2017, 7, 1700920.

    Google Scholar 

  6. Hou, R. L.; Liu, B.; Sun, Y. L.; Liu, L. Y.; Meng, J. N.; Levi, M. D.; Ji, H. X.; Yan, X. B. Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 2020, 72, 104728.

    CAS  Google Scholar 

  7. Yu, D. D.; Zhang, W.; Zhang, Q.; Huang, S. M. Tuning anion chemistry enables high-voltage and stable potassium-based tellurium-graphite batteries. Nano Energy 2022, 92, 106744.

    CAS  Google Scholar 

  8. Zhu, J. J.; Li, Y. L.; Yang, B. J.; Liu, L. Y.; Li, J. S.; Yan, X. B.; He, D. Y. A dual carbon-based potassium dual ion battery with robust comprehensive performance. Small 2018, 14, 1801836.

    Google Scholar 

  9. Liu, M. Q.; Chang, L. M.; Le, Z. Y.; Jiang, J. M.; Li, J. H.; Wang, H. R.; Zhao, C. M.; Xu, T. H.; Nie, P.; Wang, L. M. Emerging potassium-ion hybrid capacitors. ChemSusChem 2020, 13, 5837–5862.

    CAS  Google Scholar 

  10. Ruan, J. F.; Mo, F. J.; Chen, Z. L.; Liu, M.; Zheng, S. Y.; Wu, R. B.; Fang, F.; Song, Y.; Sun, D. L. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 2020, 10, 1904045.

    CAS  Google Scholar 

  11. Yang, K.; Liu, Q. R.; Zheng, Y. P.; Yin, H.; Zhang, S. Q.; Tang, Y. B. Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 6326–6332.

    CAS  Google Scholar 

  12. Fan, L.; Liu, Q.; Chen, S. H.; Lin, K. R.; Xu, Z.; Lu, B. A. Potassium-based dual ion battery with dual-graphite electrode. Small 2017, 13, 1701011.

    Google Scholar 

  13. Zhu, J. J.; Xu, Y. T.; Fu, Y. J.; Xiao, D. W.; Li, Y. L.; Liu, L. Y.; Wang, Y.; Zhang, Q. N.; Li, J. S.; Yan, X. B. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries. Small 2020, 16, 1905838.

    CAS  Google Scholar 

  14. Obrezkov, F. A.; Shestakov, A. F.; Vasil’ev, S. G.; Stevenson, K. J.; Troshin, P. A. Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries. J. Mater. Chem. A 2021, 9, 2864–2871.

    CAS  Google Scholar 

  15. Zhang, L.; Wang, H. Y. Intercalation of multiply solvated hexafluorophospate anion into graphite electrode from mixtures of methyl acetate, ethyl methyl, and ethylene carbonates. J. Energy Chem. 2021, 58, 233–236.

    CAS  Google Scholar 

  16. Li, X.; Ou, X. W.; Tang, Y. B. 6.0 V high-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv. Energy Mater. 2020, 10, 2002567.

    CAS  Google Scholar 

  17. Huang, Z. D.; Hou, Y.; Wang, T. R.; Zhao, Y. W.; Liang, G. J.; Li, X. L.; Guo, Y.; Yang, Q.; Chen, Z.; Li, Q. et al. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nat. Commun. 2021, 12, 3106.

    CAS  Google Scholar 

  18. Yu, D. D.; Zhu, Q. N.; Cheng, L. W.; Dong, S.; Zhang, X. H.; Wang, H.; Yang, N. J. Anion solvation regulation enables long cycle stability of graphite cathodes. ACS Energy Lett. 2021, 6, 949–958.

    CAS  Google Scholar 

  19. Cheng, Z. J.; Guo, L. F.; Dong, Q. Y.; Wang, C. T.; Yao, Q.; Gu, X.; Yang, J.; Qian, Y. T. Highly durable and ultrafast cycling of dual-ion batteries via in situ construction of cathode-electrolyte interphase. Adv. Energy Mater. 2022, 12, 2202253.

    CAS  Google Scholar 

  20. Wang, Y.; Zhang, Y. J.; Wang, S.; Dong, S. Y.; Dang, C. Q.; Hu, W. C.; Yu, D. Y. W. Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode-electrolyte interface. Adv. Funct. Mater. 2021, 31, 2102360.

    CAS  Google Scholar 

  21. Kravchyk, K. V.; Bhauriyal, P.; Piveteau, L.; Guntlin, C. P.; Pathak, B.; Kovalenko, M. V. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun. 2018, 9, 4469.

    Google Scholar 

  22. Han, X. Q.; Xu, G. J.; Zhang, Z. H.; Du, X. F.; Han, P. X.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries. Adv. Energy Mater. 2019, 9, 1804022.

    Google Scholar 

  23. Tan, H.; Zhai, D. Y.; Kang, F. Y.; Zhang, B. Synergistic PF6 and FSI intercalation enables stable graphite cathode for potassium-based dual ion battery. Carbon 2021, 178, 363–370.

    CAS  Google Scholar 

  24. Zheng, X. Y.; Gu, Z. Y.; Fu, J.; Wang, H. T.; Ye, X. L.; Huang, L. Q.; Liu, X. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947.

    CAS  Google Scholar 

  25. Holoubek, J.; Yin, Y. J.; Li, M. Q.; Yu, M. Y.; Meng, Y. S.; Liu, P.; Chen, Z. Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem., Int. Ed. 2019, 58, 18892–18897.

    CAS  Google Scholar 

  26. Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y. N.; Wang, J. L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem., Int. Ed. 2019, 58, 2760–2764.

    CAS  Google Scholar 

  27. Ou, X. W.; Li, J.; Tong, X. Y.; Zhang, G.; Tang, Y. B. Highly concentrated and nonflammable electrolyte for high energy density K-based dual-ion battery. ACS Appl. Energy Mater. 2020, 3, 10202–10208.

    CAS  Google Scholar 

  28. Liu, S. L.; Mao, J. F.; Zhang, Q.; Wang, Z. J.; Pang, W. K.; Zhang, L.; Du, A. J.; Sencadas, V.; Zhang, W. C.; Guo, Z. P. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem., Int. Ed. 2020, 59, 3638–3644.

    CAS  Google Scholar 

  29. Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.

    CAS  Google Scholar 

  30. Seggem, P.; Jetti, V. R.; Basak, P. Nonflammable and stable quasi-solid electrolytes: Demonstrating the feasibility of application in rechargeable solid-state magnesium batteries. ACS Appl. Energy Mater. 2022, 5, 6606–6617.

    CAS  Google Scholar 

  31. Jia, M. M.; Zhang, C.; Guo, Y. W.; Peng, L. S.; Zhang, X. Y.; Qian, W. W.; Zhang, L.; Zhang, S. J. Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery. Energy Environ. Mater. 2022, 5, 1294–1302.

    CAS  Google Scholar 

  32. Tsubouchi, S.; Suzuki, S.; Nishimura, K.; Okumura, T.; Abe, T. Effect of Lewis acids on graphite-electrode properties in EC-based electrolyte solutions with organophosphorus compounds. J. Electrochem. Soc. 2018, 165, A680–A687.

    CAS  Google Scholar 

  33. Yu, D. D.; Wang, H.; Zhang, W.; Dong, H. F.; Zhu, Q. N.; Yang, J.; Huang, S. Unraveling the role of ion-solvent chemistry in stabilizing small-molecule organic cathode for potassium-ion batteries. Energy Storage Mater. 2021, 43, 172–181.

    Google Scholar 

  34. Wang, G.; Yu, M. H.; Wang, J. G.; Li, D. B.; Tan, D. M.; Löffler, M.; Zhuang, X. D.; Mullen, K.; Feng, X. L. Self-activating, capacitive anion intercalation enables high-power graphite cathodes. Adv. Mater. 2018, 30, 1800533.

    Google Scholar 

  35. Read, J. A.; Cresce, A. V.; Ervin, M. H.; Xu, K. Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ. Sci. 2014, 7, 617–620.

    CAS  Google Scholar 

  36. Qiao, Y.; Jiang, K. Z.; Li, X.; Deng, H.; He, Y. B.; Chang, Z.; Wu, S. C.; Guo, S. H.; Zhou, H. S. A hybrid electrolytes design for capacity-equivalent dual-graphite battery with superior long-term cycle life. Adv. Energy Mater. 2018, 8, 1801120.

    Google Scholar 

  37. Jiang, X. Y.; Liu, X. W.; Zeng, Z. Q.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life. Adv. Energy Mater. 2018, 8, 1802176.

    Google Scholar 

  38. Wrogemann, J. M.; Haneke, L.; Ramireddy, T.; Frerichs, J. E.; Sultana, I.; Chen, Y. I.; Brink, F.; Hansen, M. R.; Winter, M.; Glushenkov, A. M. et al. Advanced dual-ion batteries with high-capacity negative electrodes incorporating black phosphorus. Adv. Sci. 2022, 9, 2201116.

    CAS  Google Scholar 

  39. Wang, H.; Yu, D. D.; Wang, X.; Niu, Z. Q.; Chen, M. X.; Cheng, L. W.; Zhou, W.; Guo, L. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16451–16455.

    CAS  Google Scholar 

  40. Wang, W.; Huang, H. X.; Wang, B.; Qian, C.; Li, P. H.; Zhou, J. H.; Liang, Z. B.; Yang, C.; Guo, S. J. A new dual-ion battery based on amorphous carbon. Sci. Bull. 2019, 64, 1634–1642.

    CAS  Google Scholar 

  41. Liu, T. M.; Han, X. Q.; Zhang, Z. H.; Chen, Z.; Wang, P.; Han, P. X.; Ding, N. X.; Cui, G. L. A high concentration electrolyte enables superior cycleability and rate capability for high voltage dual graphite battery. J. Power Sources 2019, 437, 226942.

    CAS  Google Scholar 

  42. Ji, S. P.; Li, J. L.; Li, J. F.; Song, C. Y.; Wang, S.; Wang, K. X.; Hui, K. S.; Zha, C. Y.; Zheng, Y. S.; Dinh, D. A. et al. Dynamic reversible evolution of solid electrolyte interface in nonflammable triethyl phosphate electrolyte enabling safe and stable potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2200771.

    CAS  Google Scholar 

  43. Wang, Z. J.; Wang, Y. Y.; Li, B. H.; Bouwer, J. C.; Davey, K.; Lu, J.; Guo, Z. P. Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202206682.

    CAS  Google Scholar 

  44. Zhang, X. Y.; Jia, M. M.; Zhang, Q. P.; Zhang, N. N.; Wu, X. K.; Qi, S. T.; Zhang, L. LiNO3 and TMP enabled high voltage room-temperature solid-state lithium metal battery. Chem. Eng. J. 2022, 448, 137743.

    CAS  Google Scholar 

  45. Asfaw, H. D.; Kotronia, A. A polymeric cathode-electrolyte interface enhances the performance of MoS2-graphite potassium dual-ion intercalation battery. Cell Rep. Phys. Sci. 2022, 3, 100693.

    CAS  Google Scholar 

  46. Zhao, Y.; Liu, B. Z.; Yi, Y. Y.; Lian, X. Y.; Wang, M. L.; Li, S.; Yang, X. Z.; Sun, J. Y. An anode-free potassium-metal battery enabled by a directly grown graphene-modulated aluminum current collector. Adv. Mater. 2022, 34, 2202902.

    CAS  Google Scholar 

  47. Li, J. F.; Hu, Y. Y.; Xie, H. B.; Peng, J.; Fan, L.; Zhou, J.; Lu, B. A. Weak cation-solvent interactions in ether-based electrolytes stabilizing potassium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202208291.

    CAS  Google Scholar 

  48. Li, S. W.; Zhu, H. L.; Liu, Y.; Han, Z. L.; Peng, L. F.; Li, S. P.; Yu, C.; Cheng, S. J.; Xie, J. Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 2022, 13, 4911.

    CAS  Google Scholar 

  49. Yi, Y. Y.; Li, J. Q.; Gao, Z. X.; Liu, W. F.; Zhao, Y.; Wang, M. L.; Zhao, W.; Han, Y.; Sun, J. Y.; Zhang, J. Highly potassiophilic graphdiyne skeletons decorated with Cu quantum dots enable dendrite-free potassium-metal anodes. Adv. Mater. 2022, 34, 2202685.

    CAS  Google Scholar 

  50. Sui, Y. M.; Liu, C. F.; Masse, R. C.; Neale, Z. G.; Atif, M.; AlSalhi, M.; Cao, G. Z. Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Mater. 2020, 25, 1–32.

    Google Scholar 

  51. Küpers, V.; Dohmann, J. F.; Bieker, P.; Winter, M.; Placke, T.; Kolek, M. Opportunities and limitations of ionic liquid- and organic carbonate solvent-based electrolytes for Mg-ion-based dual-ion batteries. ChemSusChem 2021, 14, 4480–4498.

    Google Scholar 

  52. Zhang, X.; Zhu, H. Z.; He, Q.; Xiong, T.; Wang, X. P.; Xiao, Z. T.; Wang, H.; Zhao, Y.; Xu, L.; Mai, L. Q. K+ induced phase transformation of layered titanium disulfide boosts ultrafast potassium-ion storage. Adv. Funct. Mater. 2022, 32, 2205330.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (Nos. 52002081, 51972294, and 51872271).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dandan Yu, Laishun Qin or Da Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Ma, G., Yu, D. et al. A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries. Nano Res. 16, 6353–6360 (2023). https://doi.org/10.1007/s12274-023-5438-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5438-z

Keywords

Navigation