Skip to main content
Log in

Development and application of blade-coating technique in organic solar cells

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to the characteristics of lower material waste, higher crystallinity, roll-to-roll compatibility, and high-throughput continuous processing, blade-coating has been widely applied in the preparation of large-area organic solar cells. In this paper, the technique of blade-coating is introduced, including the effects of blading speed, substrate temperature, and other technological innovations during the process of blade-coating. Besides, the recent progress of blade-coating in organic solar cells is summarized and the active layer prepared by a blade-coating method is introduced in detail, including materials, processing methods, solvents, and additives. The interface layer and electrodes prepared by the blade-coating method are also discussed. Finally, some perspectives on the blade-coating method are proposed. In the foreseeable future, blade-coating will become the core of batch production of large-area organic solar cells, so as to make organic solar cells more competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, C. L.; Pan, Y. W.; Ouyang, Y. N.; Shen, Q.; Gao, Y.; Yan, K. R.; Fang, J.; Chen, Y. Y.; Ma, C. Q.; Min, J. et al. Manipulating the D: A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544.

    Article  CAS  Google Scholar 

  2. Sun, R.; Wu, Y.; Yang, X. R.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J. W.; Wang, T.; Guo, J.; Liu, C. et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 2022, 34, 2110147.

    Article  CAS  Google Scholar 

  3. Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.

    Article  CAS  Google Scholar 

  4. Liu, S. Q.; Chen, D.; Zhou, W. H.; Yu, Z.; Chen, L.; Liu, F.; Chen, Y. W. Vertical distribution to optimize active layer morphology for efficient all-polymer solar cells by J71 as a compatibilizer. Macromolecules 2019, 52, 4359–4369.

    Article  CAS  Google Scholar 

  5. Wan, J.; Zhang, L. F.; He, Q. N.; Liu, S. Q.; Huang, B.; Hu, L.; Zhou, W. H.; Chen, Y. W. High-performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor. Adv. Funct. Mater. 2020, 30, 1909760.

    Article  CAS  Google Scholar 

  6. Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412.

    Article  CAS  Google Scholar 

  7. Bornside, D. E.; Macosko, C. W.; Scriven, L. E. Spin coating: One-dimensional model. J. Appl. Phys. 1989, 66, 5185–5193.

    Article  CAS  Google Scholar 

  8. Liu, F.; Ferdous, S.; Schaible, E.; Hexemer, A.; Church, M.; Ding, X. D.; Wang, C.; Russell, T. P. Fast printing and in-titu morphology observation of organic photovoltaics using slot-die coating. Adv. Mater. 2015, 27, 886–891.

    Article  Google Scholar 

  9. Na, S. I.; Seo, Y. H.; Nah, Y. C.; Kim, S. S.; Heo, H.; Kim, J. E.; Rolston, N.; Dauskardt, R. H.; Gao, M.; Lee, Y. et al. High performance roll-to-roll produced fullerene-free organic photovoltaic devices via temperature-controlled slot die coating. Adv. Funct. Mater. 2018, 29, 1805825.

    Article  Google Scholar 

  10. Haldar, A.; Liao, K. S.; Curran, S. A. Effect of printing parameters and annealing on organic photovoltaics performance. J. Mater. Res. 2012, 27, 2079–2087.

    Article  CAS  Google Scholar 

  11. Schilinsky, P.; Waldauf, C.; Brabec, C. J. Performance analysis of printed bulk heterojunction solar cells. Adv. Funct. Mater. 2006, 16, 1669–1672.

    Article  CAS  Google Scholar 

  12. Chang, Y. H.; Tseng, S. R.; Chen, C. Y.; Meng, H. F.; Chen, E. C.; Horng, S. F.; Hsu, C. S. Polymer solar cell by blade coating. Org. Electron. 2009, 10, 741–746.

    Article  CAS  Google Scholar 

  13. Wang, L.; Yu, F.; Zhao, H.; Wang, Y. F.; Gu, T. F.; Su, W. Y.; Liang, Q. B.; Tang, Z. F.; Wu, H. B.; Hou, L. T. Impact of charge generation and extraction on photovoltaic performances of spin- and blade-as well as spray-coated organic solar cells. Org. Electron. 2022, 101, 106423.

    Article  CAS  Google Scholar 

  14. Tsai, P. T.; Lin, K. C.; Wu, C. Y.; Liao, C. H.; Lin, M. C.; Wong, Y. Q.; Meng, H. F.; Chang, C. Y.; Wang, C. L.; Huang, Y. F. et al. Toward long-term stable and efficient large-area organic solar cells. ChemSusChem 2017, 10, 2778–2787.

    Article  CAS  Google Scholar 

  15. Zhao, W. C.; Zhang, S. Q.; Zhang, Y.; Li, S. S.; Liu, X. Y.; He, C.; Zheng, Z.; Hou, J. H. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 2018, 30, 1704837.

    Article  Google Scholar 

  16. Guan, W.; Yuan, D.; Wu, J. T.; Zhou, X. B.; Zhao, H.; Guo, F.; Zhang, L. J.; Zhou, K.; Ma, W.; Cai, W. Z. et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J. Semicond. 2021, 42, 030502.

    Article  CAS  Google Scholar 

  17. Zhang, Y.; Liu, K.; Huang, J. M.; Xia, X. X.; Cao, J. P.; Zhao, G. M.; Fong, P. W. K.; Zhu, Y.; Yan, F.; Yang, Y. et al. Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 2021, 12, 4815.

    Article  CAS  Google Scholar 

  18. Li, H. J.; Liu, S. Q.; Wu, X. T.; Qi, Q. C.; Zhang, H. Y.; Meng, X. C.; Hu, X. T.; Ye, L.; Chen, Y. W. A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy Environ. Sci. 2022, 15, 2130–2138.

    Article  CAS  Google Scholar 

  19. Tsai, P. T.; Yu, K. C.; Chang, C. J.; Horng, S. F.; Meng, H. F. Large-area organic solar cells by accelerated blade coating. Org. Electron. 2015, 22, 166–172.

    Article  CAS  Google Scholar 

  20. Zhang, K.; Chen, Z. M.; Armin, A.; Dong, S.; Xia, R. X.; Yip, H. L.; Shoaee, S.; Huang, F.; Cao, Y. Efficient large area organic solar cells processed by blade-coating with single-component green solvent. Sol. RRL 2018, 2, 1700169.

    Article  Google Scholar 

  21. Zhao, W. C.; Zhang, Y.; Zhang, S. Q.; Li, S. S.; He, C.; Hou, J. H. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. J. Mater. Chem. C 2019, 7, 3206–3211.

    Article  CAS  Google Scholar 

  22. Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B. B.; Luo, Z. H.; Yang, W. Y.; Hu, Z. C.; Guo, J. et al. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 2020, 4, 407–419.

    Article  CAS  Google Scholar 

  23. Distler, A.; Brabec, C. J.; Egelhaaf, H. J. Organic photovoltaic modules with new world record efficiencies. Prog. Photovolt. Res. Appl. 2021, 29, 24–31.

    Article  Google Scholar 

  24. Fan, J. Y.; Liu, Z. X.; Rao, J.; Yan, K. R.; Chen, Z.; Ran, Y. X.; Yan, B. Y.; Yao, J. Z.; Lu, G. H.; Zhu, H. M. et al. High-performance organic solar modules via bilayer-merged-annealing assisted blade coating. Adv. Mater. 2022, 34, 2110569.

    Article  CAS  Google Scholar 

  25. Wang, G. D.; Adil, M. A.; Zhang, J. Q.; Wei, Z. X. Large-area organic solar cells: Material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089.

    Article  CAS  Google Scholar 

  26. Deng, Y. H.; Peng, E.; Shao, Y. C.; Xiao, Z. G.; Dong, Q. F.; Huang, J. S. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 2015, 8, 1544–1550.

    Article  CAS  Google Scholar 

  27. Becerril, H. A.; Roberts, M. E.; Liu, Z. H.; Locklin, J.; Bao, Z. N. High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv. Mater. 2008, 20, 2588–2594.

    Article  CAS  Google Scholar 

  28. Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. N. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.

    Article  CAS  Google Scholar 

  29. Gu, X. D.; Zhou, Y.; Gu, K.; Kurosawa, T.; Guo, Y. K.; Li, Y. K.; Lin, H. R.; Schroeder, B. C.; Yan, H. P.; Molina-Lopez, F. et al. Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend. Adv. Energy Mater. 2017, 7, 1602742.

    Article  Google Scholar 

  30. Jiang, C. Y.; Chellappan, V.; Goh, W. P.; Zhang, J. Investigating coating method induced vertical phase distribution in polymer-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 2018, 179, 241–246.

    Article  CAS  Google Scholar 

  31. Pokuri, B. S. S.; Sit, J.; Wodo, O.; Baran, D.; Ameri, T.; Brabec, C. J.; Moule, A. J.; Ganapathysubramanian, B. Nanoscale morphology of doctor bladed versus spin-coated organic photovoltaic films. Adv. Energy Mater. 2017, 7, 1701269.

    Article  Google Scholar 

  32. Zhang, L.; Zhao, H.; Lin, B. J.; Yuan, J.; Xu, X. B.; Wu, J. N.; Zhou, K.; Guo, X.; Zhang, M. J.; Ma, W. A blade-coated highly efficient thick active layer for non-fullerene organic solar cells. J. Mater. Chem. A 2019, 7, 22265–22273.

    Article  CAS  Google Scholar 

  33. Li, Y. Z.; Liu, H.; Wu, J.; Tang, H.; Wang, H. L.; Yang, Q. Q.; Fu, Y. Y.; Xie, Z. Y. Additive and high-temperature processing boost the photovoltaic performance of nonfullerene organic solar cells fabricated with blade coating and nonhalogenated solvents. ACS Appl. Mater. Interfaces 2021, 13, 10239–10248.

    Article  Google Scholar 

  34. Yuan, J.; Liu, D. J.; Zhao, H.; Lin, B. J.; Zhou, X. B.; Naveed, H. B.; Zhao, C.; Zhou, K.; Tang, Z.; Chen, F. et al. Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells. Adv. Energy Mater. 2021, 11, 2100098.

    Article  CAS  Google Scholar 

  35. Yoon, S.; Shin, E. Y.; Cho, N. K.; Park, S.; Woo, H. Y.; Son, H. J. Progress in morphology control from fullerene to nonfullerene acceptors for scalable high-performance organic photovoltaics. J. Mater. Chem. A 2021, 9, 24729–24758.

    Article  CAS  Google Scholar 

  36. Zhang, B.; Yang, F.; Chen, S. S.; Chen, H. Y.; Zeng, G.; Shen, Y. X.; Li, Y. W.; Li, Y. F. Fluid mechanics inspired sequential blade-coating for high-performance large-area organic solar modules. Adv. Funct. Mater. 2022, 32, 2202011.

    Article  CAS  Google Scholar 

  37. Gu, X. D.; Shaw, L.; Gu, K.; Toney, M. F.; Bao, Z. N. The meniscus-guided deposition of semiconducting polymers. Nat. Commun. 2018, 9, 534.

    Article  Google Scholar 

  38. Le Berre, M.; Chen, Y.; Baigl, D. From convective assembly to Landau—Levich deposition of multilayered phospholipid films of controlled thickness. Langmuir 2009, 25, 2554–2557.

    Article  CAS  Google Scholar 

  39. Xiao, Y. F.; Zuo, C. T.; Zhong, J. X.; Wu, W. Q.; Shen, L.; Ding, L. M. Large-area blade-coated solar cells: Advances and perspectives. Adv. Energy Mater. 2021, 11, 2100378.

    Article  CAS  Google Scholar 

  40. Park, S. H.; Park, S.; Lee, S.; Kim, J.; Ahn, H.; Kim, B. J.; Chae, B.; Son, H. J. Developement of highly efficient large area organic photovoltaic module: Effects of nonfullerene acceptor. Nano Energy 2020, 77, 105147.

    Article  CAS  Google Scholar 

  41. Chen, E. C.; Tsai, P. T.; Chang, B. J.; Wang, C. M.; Meng, H. F.; Tsai, J. Y.; Chang, Y. F.; Chen, Z. K.; Li, C. H.; Hsu, Y. H. et al. Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents. Jpn. J. Appl. Phys. 2014, 53, 062301.

    Article  CAS  Google Scholar 

  42. Huang, K. M.; Wong, Y. Q.; Lin, M. C.; Chen, C. H.; Liao, C. H.; Chen, J. Y.; Huang, Y. H.; Chang, Y. F.; Tsai, P. T.; Chen, S. H. et al. Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm2. Prog. Photovolt. Res. Appl. 2019, 27, 264–274.

    Article  CAS  Google Scholar 

  43. Lin, Y. B.; Yu, L. Y.; Xia, Y. X.; Firdaus, Y.; Dong, S.; Müller, C.; Inganäs, O.; Huang, F.; Anthopoulos, T. D.; Zhang, F. L. et al. One-step blade-coated highly efficient nonfullerene organic solar cells with a self-assembled interfacial layer enabled by solvent vapor annealing. Sol. RRL 2019, 3, 1900179.

    Article  Google Scholar 

  44. Sánchez-Díaz, A.; Rodríguez-Martínez, X.; Córcoles-Guija, L.; Mora-Martín, G.; Campoy-Quiles, M. High-throughput multiparametric screening of solution processed bulk heterojunction solar cells. Adv. Electron. Mater. 2018, 4, 1700477.

    Article  Google Scholar 

  45. Dörling, B.; Vohra, V.; Dao, T. T.; Garriga, M.; Murata, H.; Campoy-Quiles, M. Uniaxial macroscopic alignment of conjugated polymer systems by directional crystallization during blade coating. J. Mater. Chem. C 2014, 2, 3303–3310.

    Article  Google Scholar 

  46. Rodríguez-Martínez, X.; Sevim, S.; Xu, X. F.; Franco, C.; Pamies-Puig, P.; Córcoles-Guija, L.; Rodriguez-Trujillo, R.; Campo, F. J.; Rodriguez San Miguel, D.; deMello, A. J. et al. Microfluidic-assisted blade coating of compositional libraries for combinatorial applications: The case of organic photovoltaics. Adv. Energy Mater. 2020, 10, 2001308.

    Article  Google Scholar 

  47. Zhong, M. Y.; Li, Y. X.; Du, G. X.; Li, Y. Z.; Chang, K.; Lau, T. K.; Lu, X. H.; Sun, H. L.; Guo, X. G.; Guo, Y. F. et al. Soft porous blade printing of nonfullerene organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 25843–25852.

    Article  CAS  Google Scholar 

  48. Li, Y. Z.; Deng, L. L.; Du, G. X.; Li, Y. X.; Zhao, X. Y.; Deng, W. W. Additive-free organic solar cells with enhanced efficiency enabled by unidirectional printing flow of high shear rate. Org. Electron. 2021, 97, 106274.

    Article  CAS  Google Scholar 

  49. Chen, Y. S.; Wan, X. J.; Long, G. K. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013, 46, 2645–2655.

    Article  CAS  Google Scholar 

  50. Tsai, P. T.; Meng, H. F.; Chen, Y. S.; Kan, B.; Horng, S. F. Enhancing efficiency for additive-free blade-coated small-molecule solar cells by thermal annealing. Org. Electron. 2016, 37, 305–311.

    Article  CAS  Google Scholar 

  51. Wang, J. W.; Cui, Y.; Xu, Y.; Xian, K. H.; Bi, P. Q.; Chen, Z. H.; Zhou, K. K.; Ma, L. J.; Zhang, T.; Yang, Y. et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Adv. Mater. 2022, 34, 2205009.

    Article  CAS  Google Scholar 

  52. Liu, Y. F.; Yangui, A.; Zhang, R.; Kiligaridis, A.; Moons, E.; Gao, F.; Inganäs, O.; Scheblykin, I. G.; Zhang, F. L. In-sttu optical studies on morphology formation in organic photovoltaic blends. Small Methods 2021, 5, 2100585.

    Article  CAS  Google Scholar 

  53. Chen, D.; Liu, S. Q.; Huang, B.; Oh, J.; Wu, F. Y.; Liu, J. B.; Yang, C.; Chen, L.; Chen, Y. W. Rational regulation of the molecular aggregation enables a facile blade-coating process of large-area allpolymer solar cells with record efficiency. Small 2022, 18, 2200734.

    Article  CAS  Google Scholar 

  54. Wu, X. M.; Lan, S. Q.; Zhang, G. C.; Chen, Q. Z.; Chen, H. P.; Guo, T. L. Morphology of a ternary blend solar cell based on small molecule:conjugated polymer:fullerene fabricated by blade coating. Adv. Funct. Mater. 2017, 27, 1703268.

    Article  Google Scholar 

  55. Feng, H. R.; Dai, Y. J.; Guo, L. H.; Wang, D.; Dong, H.; Liu, Z. H.; Zhang, L.; Zhu, Y. J.; Su, C.; Chen, Y. S. et al. Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component. Nano Res. 2022, 15, 3222–3229.

    Article  CAS  Google Scholar 

  56. Hu, H. W.; Ye, L.; Ghasemi, M.; Balar, N.; Rech, J. J.; Stuard, S. J.; You, W.; O’Connor, B. T.; Ade, H. Highly efficient, stable, and ductile ternary nonfullerene organic solar cells from a two-donor polymer blend. Adv. Mater. 2019, 31, 1808279.

    Article  Google Scholar 

  57. Xing, Z.; Meng, X. C.; Sun, R.; Hu, T.; Huang, Z. Q.; Min, J.; Hu, X. T.; Chen, Y. W. An effective method for recovering nonradiative recombination loss in scalable organic solar cells. Adv. Funct. Mater. 2020, 30, 2000417.

    Article  CAS  Google Scholar 

  58. Zhu, C.; Huang, H.; Jia, Z. R.; Cai, F. F.; Li, J.; Yuan, J.; Meng, L.; Peng, H. J.; Zhang, Z. J.; Zou, Y. P. et al. Spin-coated 10.46% and blade-coated 9.52% of ternary semitransparent organic solar cells with 26.56% average visible transmittance. Sol. Energy 2020, 204, 660–666.

    Article  CAS  Google Scholar 

  59. Zhang, L.; Xu, X. B.; Lin, B. J.; Zhao, H.; Li, T. F.; Xin, J. M.; Bi, Z. Z.; Qiu, G. X.; Guo, S. W.; Zhou, K. et al. Achieving balanced crystallinity of donor and acceptor by combining blade-coating and ternary strategies in organic solar cells. Adv. Mater. 2018, 30, 1805041.

    Article  Google Scholar 

  60. Ongul, F.; Yuksel, S. A.; Allahverdi, C.; Bozar, S.; Kazici, M.; Gunes, S. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 194, 50–56.

    Article  CAS  Google Scholar 

  61. Zhang, X. N.; Li, C.; Xu, J. Q.; Wang, R.; Song, J. L.; Zhang, H.; Li, Y. X.; Jing, Y. N.; Li, S. L.; Wu, G. B. et al. High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 2022, 6, 444–457.

    Article  CAS  Google Scholar 

  62. Bi, P. Q.; Zhang, S. Q.; Chen, Z. H.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J. Z.; Qin, J. Z.; Hong, L.; Hao, X. T. et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5, 2408–2419.

    Article  CAS  Google Scholar 

  63. Zhang, G. C.; Lin, F. R.; Qi, F.; Heumüller, T.; Distler, A.; Egelhaaf, H. J.; Li, N.; Chow, P. C. Y.; Brabec, C. J.; Jen, A. K. Y. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 2022, 122, 14180–14274.

    Article  CAS  Google Scholar 

  64. Ayzner, A. L.; Tassone, C. J.; Tolbert, S. H.; Schwartz, B. J. Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: The role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. C 2009, 113, 20050–20060.

    Article  CAS  Google Scholar 

  65. Zhan, L. L.; Li, S. X.; Xia, X. X.; Li, Y. K.; Lu, X. H.; Zuo, L. J.; Shi, M. M.; Chen, H. Z. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv. Mater. 2021, 33, 2007231.

    Article  CAS  Google Scholar 

  66. Yang, Y.; Feng, E. M.; Li, H. Y.; Shen, Z. C.; Liu, W. R.; Guo, J. B.; Luo, Q.; Zhang, J. D.; Lu, G. H.; Ma, C. Q. et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res. 2021, 14, 4236–4242.

    Article  CAS  Google Scholar 

  67. Wang, Y. L.; Zhu, Q. L.; Naveed, H. B.; Zhao, H.; Zhou, K.; Ma, W. Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells. Adv. Energy Mater. 2020, 10, 1903609.

    Article  CAS  Google Scholar 

  68. Wang, Y. L.; Wang, X. H.; Lin, B. J.; Bi, Z. Z.; Zhou, X. B.; Naveed, H. B.; Zhou, K.; Yan, H. P.; Tang, Z.; Ma, W. Achieving balanced crystallization kinetics of donor and acceptor by sequential-blade coated double bulk heterojunction organic solar cells. Adv. Energy Mater. 2020, 10, 2000826.

    Article  CAS  Google Scholar 

  69. Chochos, C. L.; Drakopoulou, S.; Katsouras, A.; Squeo, B. M.; Sprau, C.; Colsmann, A.; Gregoriou, V. G.; Cando, A. P.; Allard, S.; Scherf, U. et al. Beyond donor-acceptor (D-A) approach: Structure-optoelectronic properties-organic photovoltaic performance correlation in new D-A1-D-A2 low-bandgap conjugated polymers. Macromol. Rapid Commun. 2017, 38, 1600720.

    Article  Google Scholar 

  70. Chochos, C. L.; Katsouras, A.; Gasparini, N.; Koulogiannis, C.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Rational design of highperformance wide-bandgap (≈ 2 eV) polymer semiconductors as electron donors in organic photovoltaics exhibiting high open circuit voltages (≈ 1 V). Macromol. Rapid Commun. 2017, 38, 1600614.

    Article  Google Scholar 

  71. Wu, Q.; Wang, W.; Wu, Y.; Chen, Z.; Guo, J.; Sun, R.; Guo, J.; Yang, Y.; Min, J. High-performance all-polymer solar cells with a pseudo-bilayer configuration enabled by a stepwise optimization strategy. Adv. Funct. Mater. 2021, 31, 2010411.

    Article  CAS  Google Scholar 

  72. Sun, R.; Guo, J.; Wu, Q.; Zhang, Z. H.; Yang, W. Y.; Guo, J.; Shi, M. M.; Zhang, Y. H.; Kahmann, S.; Ye, L. et al. A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: Rational control of vertical stratification for high performance. Energy Environ. Sci. 2019, 12, 3118–3132.

    Article  CAS  Google Scholar 

  73. Li, S. L.; Zhang, H.; Yue, S. L.; Yu, X.; Zhou, H. Q. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. Nanotechnology 2022, 33, 072002.

    Article  CAS  Google Scholar 

  74. Han, X. N.; Zhu, J. S.; Xiao, Y. Q.; Jiang, H. T.; Zhang, Z. Z.; Wang, J. Y.; Li, Z.; Lin, Y. Z.; Lu, X. H.; Zhan, X. W. An alkoxy-solubilizing decacyclic electron acceptor for efficient ecofriendly as-cast blade-coated organic solar cells. Sol. RRL 2020, 4, 2000108.

    Article  CAS  Google Scholar 

  75. Kuznetsov, P. M.; Nikitenko, S. L.; Kuznetsov, I. E.; Proshin, P. I.; Revina, D. V.; Troshin, P. A.; Akkuratov, A. V. Thiazolothiazole-based conjugated polymers for blade-coated organic solar cells processed from an environment-friendly solvent. Tetrahedron Lett. 2020, 61, 152037.

    Article  CAS  Google Scholar 

  76. Tait, J. G.; Merckx, T.; Li, W. Q.; Wong, C.; Gehlhaar, R.; Cheyns, D.; Turbiez, M.; Heremans, P. Determination of solvent systems for blade coating thin film photovoltaics. Adv. Funct. Mater. 2015, 25, 3393–3398.

    Article  CAS  Google Scholar 

  77. Bouzid, H.; Prosa, M.; Bolognesi, M.; Chehata, N.; Gedefaw, D.; Albonetti, C.; Andersson, M. R.; Muccini, M.; Bouazizi, A.; Seri, M. Impact of environmentally friendly processing solvents on the properties of blade-coated polymer solar cells. J. Polym. Sci. A:Polym. Chem. 2019, 57, 487–494.

    Article  CAS  Google Scholar 

  78. Ye, L.; Xiong, Y.; Zhang, Q. Q.; Li, S. S.; Wang, C.; Jiang, Z.; Hou, J. H.; You, W.; Ade, H. Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Adv. Mater. 2018, 30, 1705485.

    Article  Google Scholar 

  79. Dong, S.; Zhang, K.; Xie, B. M.; Xiao, J. Y.; Yip, H. L.; Yan, H.; Huang, F.; Cao, Y. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv. Energy Mater. 2019, 9, 1802832.

    Article  Google Scholar 

  80. Zhang, J. Y.; Zhang, L. F.; Wang, X. K.; Xie, Z. J.; Hu, L.; Mao, H. D.; Xu, G. D.; Tan, L. C.; Chen, Y. W. Reducing photovoltaic property loss of organic solar cells in blade-coating by optimizing micro-nanomorphology via nonhalogenated solvent. Adv. Energy Mater. 2022, 12, 2200165.

    Article  CAS  Google Scholar 

  81. McDowell, C.; Abdelsamie, M.; Toney, M. F.; Bazan, G. C. Solvent additives: Key morphology-directing agents for solution-processed organic solar cells. Adv. Mater. 2018, 30, 1707114.

    Article  Google Scholar 

  82. Shin, N.; Richter, L. J.; Herzing, A. A.; Kline, R. J.; DeLongchamp, D. M. Effect of processing additives on the solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements. Adv. Energy Mater. 2013, 3, 938–948.

    Article  CAS  Google Scholar 

  83. Liu, F.; Zhao, W.; Tumbleston, J. R.; Wang, C.; Gu, Y.; Wang, D.; Briseno, A. L.; Ade, H.; Russell, T. P. Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 2014, 4, 1301377.

    Article  Google Scholar 

  84. Sundaresan, C.; Alem, S.; Radford, C. L.; Grant, T. M.; Kelly, T. L.; Lu, J. P.; Tao, Y.; Lessard, B. H. Changes in optimal ternary additive loading when processing large area organic photovoltaics by spin- versus blade-coating methods. Sol. RRL 2021, 5, 2100432.

    Article  CAS  Google Scholar 

  85. Lin, Y. B.; Jin, Y. Z.; Dong, S.; Zheng, W. H.; Yang, J. Y.; Liu, A. L.; Liu, F.; Jiang, Y. F.; Russell, T. P.; Zhang, F. L. et al. Printed nonfullerene organic solar cells with the highest efficiency of 95%. Adv. Energy Mater. 2018, 3, 1701942.

    Article  Google Scholar 

  86. Lee, S.; Park, K. H.; Lee, J. H.; Back, H.; Sung, M. J.; Lee, J.; Kim, J.; Kim, H.; Kim, Y. H.; Kwon, S. K. et al. Achieving thickness-insensitive morphology of the photoactive layer for printable organic photovoltaic cells via side chain engineering in nonfullerene acceptors. Adv. Energy Mater. 2019, 9, 1900044.

    Article  Google Scholar 

  87. Pelse, I.; Hernandez, J. L.; Engmann, S.; Herzing, A. A.; Richter, L. J.; Reynolds, J. R. Cosolvent effects when blade-coating a low-solubility conjugated polymer for bulk heterojunction organic photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 27416–27424.

    Article  CAS  Google Scholar 

  88. Zhang, L.; Lin, B. J.; Hu, B.; Xu, X. B.; Ma, W. Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability. Adv. Mater. 2018, 30, 1800343.

    Article  Google Scholar 

  89. Zhang, L.; Zhao, H.; Yuan, J.; Lin, B. J.; Xing, Z.; Meng, X. C.; Ke, L. L.; Hu, X. T.; Ma, W.; Yuan, Y. B. Blade-coated efficient and stable large-area organic solar cells with optimized additive. Org. Electron. 2020, 83, 105771.

    Article  CAS  Google Scholar 

  90. Li, Y. X.; Ding, J. W.; Liang, C.; Zhang, X. N.; Zhang, J. Q.; Jakob, D. S.; Wang, B. X.; Li, X.; Zhang, H.; Li, L. N. et al. Nanoscale heterogeneous distribution of surface energy at interlayers in organic bulk-heterojunction solar cells. Joule 2021, 5, 3154–3168.

    Article  CAS  Google Scholar 

  91. Bishnoi, S.; Datt, R.; Arya, S.; Gupta, S.; Gupta, R.; Tsoi, W. C.; Sharma, S. N.; Patole, S. P.; Gupta, V. Engineered cathode buffer layers for highly efficient organic solar cells: A review. Adv. Mater. Interfaces 2022, 9, 2101693.

    Article  CAS  Google Scholar 

  92. Yang, Y.; Wang, J. W.; Bi, P. Q.; Kang, Q.; Zheng, Z.; Xu, B. W.; Hou, J. H. Universal hole transporting material via mutual doping for conventional, inverted, and blade-coated large-area organic solar cells. Chem. Mater. 2022, 34, 6312–6322.

    Article  CAS  Google Scholar 

  93. Kang, Q.; Yang, B.; Xu, Y.; Xu, B. W.; Hou, J. H. Printable MoOx anode interlayers for organic solar cells. Adv. Mater. 2018, 30, 1801718.

    Article  Google Scholar 

  94. Kang, Q.; Liao, Q.; Xu, Y.; Xu, L.; Zu, Y. F.; Li, S. S.; Xu, B. W.; Hou, J. H. p-Doped conducting polyelectrolyte as an anode interlayer enables high efficiency for 1 cm2 printed organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 20205–20213.

    Article  CAS  Google Scholar 

  95. Kang, Q.; Ye, L.; Xu, B. W.; An, C. B.; Stuard, S. J.; Zhang, S. Q.; Yao, H. F.; Ade, H.; Hou, J. H. A printable organic cathode interlayer enables over 13% efficiency for 1-cm2 organic solar cells. Joule 2019, 3, 227–239.

    Article  CAS  Google Scholar 

  96. Bai, Y. M.; Zhao, C. Y.; Zhang, S.; Zhang, S. Q.; Yu, R. N.; Hou, J. H.; Tan, Z. A.; Li, Y. F. Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Sci. China Chem. 2020, 63, 957–965.

    Article  CAS  Google Scholar 

  97. Yang, Y.; Kang, Q.; Liao, Q.; Zheng, Z.; He, C.; Xu, B. W.; Hou, J. H. Inorganic molecular clusters with facile preparation and neutral pH for efficient hole extraction in organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 39462–39470.

    Article  CAS  Google Scholar 

  98. Shafiey Dehaj, M.; Ahmadi, M.; Ghazanfarpour, S. Inverted bulk heterojunction organic solar cells using optimization of active layer deposition via controlling of doctor blade parameters. Surf. Interfaces 2020, 21, 100694.

    Article  CAS  Google Scholar 

  99. Guo, X. T.; Li, H. Y.; Han, Y. F.; Yang, Y.; Luo, Q.; Ma, C. Q.; Yang, J. L. Fully doctor-bladed efficient organic solar cells processed under ambient condition. Org. Electron. 2020, 82, 105725.

    Article  CAS  Google Scholar 

  100. Pérez-Gutiérrez, E.; Lozano, J.; Gaspar-Tánori, J.; Maldonado, J. L.; Gómez, B.; López, L.; Amores-Tapia, L. F.; Barbosa-García, O.; Percino, M. J. Organic solar cells all made by blade and slot-die coating techniques. Solar Energy 2017, 146, 79–84.

    Article  Google Scholar 

  101. Koppitz, M.; Wegner, E.; Rödlmeier, T.; Colsmann, A. Hot-pressed hybrid electrodes comprising silver nanowires and conductive polymers for mechanically robust, all-doctor-bladed semitransparent organic solar cells. Energy Technol. 2018, 6, 1275–1282.

    Article  CAS  Google Scholar 

  102. Byun, W. B.; Lee, S. K.; Lee, J. C.; Moon, S. J.; Shin, W. S. Bladed organic photovoltaic cells. Curr. Appl. Phys. 2011, 11, S179–S184.

    Article  Google Scholar 

  103. Chang, J. H.; Chen, Y. H.; Lin, H. W.; Lin, Y. T.; Meng, H. F.; Chen, E. C. Highly efficient inverted rapid-drying blade-coated organic solar cells. Org. Electron. 2012, 13, 705–709.

    Article  CAS  Google Scholar 

  104. Lim, S. L.; Chen, E. C.; Chen, C. Y.; Ong, K. H.; Chen, Z. K.; Meng, H. F. High performance organic photovoltaic cells with blade-coated active layers. Sol. Energy Mater. Sol. Cells 2012, 107, 292–297.

    Article  CAS  Google Scholar 

  105. Xiong, K.; Hou, L. T.; Wu, M. X.; Huo, Y. C.; Mo, W. S.; Yuan, Y. F.; Sun, S.; Xu, W.; Wang, E. G. From spin coating to doctor blading: A systematic study on the photovoltaic performance of an isoindigo-based polymer. Sol. Energy Mater. Sol. Cells 2015, 132, 252–259.

    Article  CAS  Google Scholar 

  106. Lee, Y. H.; Tsai, P. T.; Chang, C. J.; Meng, H. F.; Horng, S. F.; Zan, H. W.; Lin, H. C.; Liu, H. C.; Tseng, M. R.; Yeh, H. C. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell. AIP Adv. 2016, 6, 115006.

    Article  Google Scholar 

  107. Zhao, K.; Hu, H.; Spada, E.; Jagadamma, L. K.; Yan, B.; Abdelsamie, M.; Yang, Y.; Yu, L.; Munir, R.; Li, R. et al. Highly efficient polymer solar cells with printed photoactive layer: Rational process transfer from spin-coating. J. Mater. Chem. A 2016, 4, 16036–16046.

    Article  CAS  Google Scholar 

  108. Ro, H. W.; Downing, J. M.; Engmann, S.; Herzing, A. A.; DeLongchamp, D. M.; Richter, L. J.; Mukherjee, S.; Ade, H.; Abdelsamie, M.; Jagadamma, L. K. et al. Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy Environ. Sci. 2016, 9, 2835–2846.

    Article  CAS  Google Scholar 

  109. Hernandez, J. L.; Deb, N.; Wolfe, R. M. W.; Lo, C. K.; Engmann, S.; Richter, L. J.; Reynolds, J. R. Simple transfer from spin coating to blade coating through processing aggregated solutions. J. Mater. Chem. A 2017, 5, 20687–20695.

    Article  CAS  Google Scholar 

  110. Jin, H.; Tao, C.; Velusamy, M.; Aljada, M.; Zhang, Y. L.; Hambsch, M.; Burn, P. L.; Meredith, P. Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 2012, 24, 2572–2577.

    Article  CAS  Google Scholar 

  111. Lim, S. L.; Ong, K. H.; Li, J.; Yang, L.; Chang, Y. F.; Meng, H. F.; Wang, X. Z.; Chen, Z. K. Efficient, large area organic photovoltaic modules with active layers processed with non-halogenated solvents in air. Org. Electron. 2017, 43, 55–63.

    Article  CAS  Google Scholar 

  112. Sun, R.; Guo, J.; Sun, C. K.; Wang, T.; Luo, Z. H.; Zhang, Z. H.; Jiao, X. C.; Tang, W. H.; Yang, C. L.; Li, Y. F. et al. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 2019, 12, 384–395.

    Article  CAS  Google Scholar 

  113. Dong, S.; Jia, T.; Zhang, K.; Jing, J. H.; Huang, F. Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 2020, 4, 2004–2016.

    Article  CAS  Google Scholar 

  114. Liao, C. Y.; Chen, Y.; Lee, C. C.; Wang, G.; Teng, N. W.; Lee, C. H.; Li, W. L.; Chen, Y. K.; Li, C. H.; Ho, H. L. et al. Processing strategies for an organic photovoltaic module with over 10% efficiency. Joule 2020, 4, 189–206.

    Article  CAS  Google Scholar 

  115. Chen, H. Y.; Zhang, R.; Chen, X. B.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W. J.; Xu, G. Y.; Oh, J. et al. A guest-assisted molecular-organization approach for > 17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 2021, 6, 1045–1053.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21922505 and 52273245) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhang, Bing Han, Jiajie Kang or Huiqiong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, H., Li, S. et al. Development and application of blade-coating technique in organic solar cells. Nano Res. 16, 11571–11588 (2023). https://doi.org/10.1007/s12274-023-5425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5425-9

Keywords

Navigation