Skip to main content
Log in

Promotional nature of Sn on Pt/CeO2 for the oxidative dehydrogenation of propane with carbon dioxide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The oxidative dehydrogenation of propane with CO2 (CO2-ODP) is a promising technology for the efficient production of propene in tandem with CO2 reduction to CO. However, the rational design of high-performance catalysts for this green process is still challenged by limited understanding of the nature of active sites and the reaction mechanism. In this work, the effects of SnO2 promoter on Pt/CeO2 activity and propene selectivity in CO2-ODP are elucidated through varying the Sn/Pt molar ratio. When the ratio increases, propane conversion gradually decreases, while the propene selectivity increases. These dependences are explained by increasing the electron density of Pt through the promoter. The strength of this effect is determined by the Sn/Pt ratio. Owing to the electronic changes of Pt, CO2-ODP becomes more favorable than the undesired CO2 reforming of propane. Sn-modified Pt—O—Ce bonds are reasonably revealed as the active sites for CO2-ODP occurring through a redox mechanism involving the activation of CO2 over oxygen vacancies at Sn-modified Pt and CeO2 boundaries. These atomic-scale understandings are important guidelines for purposeful development of high-performance Pt-based catalysts for CO2-ODP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B. M. Propane to olefins tandem catalysis: A selective route towards light olefins production. Chem. Soc. Rev. 2021, 50, 11503–11529.

    CAS  Google Scholar 

  2. Otroshchenko, T.; Jiang, G. Y.; Kondratenko, V. A.; Rodemerck, U.; Kondratenko, E. V. Current status and perspectives in oxidative, nonoxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem. Soc. Rev. 2021, 50, 473–527.

    CAS  Google Scholar 

  3. Zhao, P.; Ye, L.; Sun, Z. Y.; Lo, B. T. W.; Woodcock, H.; Huang, C.; Tang, C.; Kirkland, A. I.; Mei, D. H.; Edman Tsang, S. C. Entrapped single tungstate site in zeolite for cooperative catalysis of olefin metathesis with brønsted acid site. J. Am. Chem. Soc. 2018, 140, 6661–6667.

    CAS  Google Scholar 

  4. Tian, P.; Wei, Y. X.; Ye, M.; Liu, Z. M. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catal. 2015, 5, 1922–1938.

    CAS  Google Scholar 

  5. Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653.

    CAS  Google Scholar 

  6. Dai, Y. H.; Gao, X.; Wang, Q. J.; Wan, X. Y.; Zhou, C. M.; Yang, Y. H. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590–5630.

    CAS  Google Scholar 

  7. Chen, S.; Chang, X.; Sun, G. D.; Zhang, T. T.; Xu, Y. Y.; Wang, Y.; Pei, C. L.; Gong, J. L. Propane dehydrogenation: Catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315–3354.

    CAS  Google Scholar 

  8. Atanga, M. A.; Rezaei, F.; Jawad, A.; Fitch, M.; Rownaghi, A. A. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Appl. Catal. B 2018, 220, 429–445.

    CAS  Google Scholar 

  9. Carrero, C. A.; Schloegl, R.; Wachs, I. E.; Schomaecker, R. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal. 2014, 4, 3357–3380.

    CAS  Google Scholar 

  10. Jiang, X.; Sharma, L.; Fung, V.; Park, S. J.; Jones, C. W.; Sumpter, B. G.; Baltrusaitis, J.; Wu, Z. L. Oxidative dehydrogenation of propane to propylene with soft oxidants via heterogeneous catalysis. ACS Catal. 2021, 11, 2182–2234.

    CAS  Google Scholar 

  11. Li, G. M.; Liu, C.; Cui, X. J.; Yang, Y. H.; Shi, F. Oxidative dehydrogenation of light alkanes with carbon dioxide. Green Chem. 2021, 23, 689–707.

    CAS  Google Scholar 

  12. Gomez, E.; Yan, B. H.; Kattel, S.; Chen, J. G. Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nat. Rev. Chem. 2019, 3, 638–649.

    CAS  Google Scholar 

  13. Gomez, E.; Kattel, S.; Yan, B. H.; Yao, S. Y.; Liu, P.; Chen, J. G. Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts. Nat. Commun. 2018, 9, 1398.

    Google Scholar 

  14. Li, L. Y.; Wang, Z. Y.; Yang, S. Y.; Chen, J. G.; He, Z. H.; Wang, K.; Luo, Q. X.; Liu, Z. W.; Liu, Z. T. Understanding the role of Fe doping in tuning the size and dispersion of GaN nanocrystallites for CO2-assisted oxidative dehydrogenation of propane. ACS Catal. 2022, 12, 8527–8543.

    CAS  Google Scholar 

  15. Wang, L.; Yang, G. Q.; Ren, X.; Liu, Z. W. CeO2-promoted PtSn/SiO2 as a high-performance catalyst for the oxidative dehydrogenation of propane with carbon dioxide. Nanomaterials 2022, 12, 417.

    CAS  Google Scholar 

  16. Wang, H.; Yang, G. Q.; Song, Y. H.; Liu, Z. T.; Liu, Z. W. Defect-rich Ce1−xZrxO2 solid solutions for oxidative dehydrogenation of ethylbenzene with CO2. Catal. Today 2018, 324, 39–48.

    Google Scholar 

  17. Salaev, M. A.; Salaeva, A. A.; Kharlamova, T. S.; Mamontov, G. V. Pt-CeO2-based composites in environmental catalysis: A review. Appl. Catal. B 2021, 295, 120286.

    CAS  Google Scholar 

  18. Song, B. C.; Si, S. X.; Soleymani, A.; Xin, Y.; Hagelin-Weaver, H. E. Effect of ceria surface facet on stability and reactivity of isolated platinum atoms. Nano Res. 2022, 15, 5922–5932.

    CAS  Google Scholar 

  19. Yang, M. L.; Zhu, Y. A.; Zhou, X. G.; Sui, Z. J.; Chen, D. First-principles calculations of propane dehydrogenation over PtSn catalysts. ACS Catal. 2012, 2, 1247–1258.

    CAS  Google Scholar 

  20. Xing, F. L.; Nakaya, Y.; Yasumura, S.; Shimizu, K. I.; Furukawa, S. Ternary platinum-cobalt-indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2. Nat. Catal. 2022, 5, 55–65.

    CAS  Google Scholar 

  21. Zhang, T. T.; Pei, C. L.; Sun, G. D.; Chen, S.; Zhao, Z. J.; Sun, S. J.; Lu, Z. P.; Xu, Y. Y.; Gong, J. L. Synergistic mechanism of platinum-GaOxcatalysts for propane dehydrogenation. Angew. Chem. 2022, 134, e202201453.

    Google Scholar 

  22. Motagamwala, A. H.; Almallahi, R.; Wormian, J.; Igenegbai, V. O.; Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021, 373, 217–222.

    CAS  Google Scholar 

  23. Nowicka, E.; Reece, C.; Althahban, S. M.; Mohammed, K. M. H.; Kondrat, S. A.; Morgan, D. J.; He, Q.; Willock, D. J.; Golunski, S.; Kiely, C. J. et al. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based catalysts. ACS Catal. 2018, 8, 3454–3468.

    CAS  Google Scholar 

  24. Xin, Y.; Zhang, N. N.; Lv, Y. N.; Wang, J.; Li, Q.; Zhang, Z. L. From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. J. Rare Earths 2020, 38, 850–862.

    CAS  Google Scholar 

  25. Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.

    CAS  Google Scholar 

  26. Shi, L.; Deng, G. M.; Li, W. C.; Miao, S.; Wang, Q. N.; Zhang, W. P.; Lu, A. H. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. 2015, 54, 13994–13998.

    CAS  Google Scholar 

  27. Tanabe, T.; Nagai, Y.; Hirabayashi, T.; Takagi, N.; Dohmae, K.; Takahashi, N.; Matsumoto, S.; Shinjoh, H.; Kondo, J. N.; Schouten, J. C. et al. Low temperature CO pulse adsorption for the determination of Pt particle size in a Pt/cerium-based oxide catalyst. Appl. Catal. A 2009, 370, 108–113.

    CAS  Google Scholar 

  28. Wang, B. F.; Chen, B. X.; Sun, Y. H.; Xiao, H. L.; Xu, X. X.; Fu, M. L.; Wu, J. L.; Chen, L. M.; Ye, D. Q. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Appl. Catal. B 2018, 238, 328–338.

    CAS  Google Scholar 

  29. Morgan, K.; Maguire, N.; Fushimi, R.; Gleaves, J. T.; Goguet, A.; Harold, M. P.; Kondratenko, E. V.; Menon, U.; Schuurman, Y.; Yablonsky, G. S. Forty years of temporal analysis of products. Catal. Sci. Technol. 2017, 7, 2416–2439.

    CAS  Google Scholar 

  30. Han, S. L.; Zhao, D.; Otroshchenko, T.; Lund, H.; Bentrup, U.; Kondratenko, V. A.; Rockstroh, N.; Bartling, S.; Doronkin, D. E.; Grunwaldt, J. D. et al. Elucidating the nature of active sites and fundamentals for their creation in Zn-containing ZrO2-based catalysts for nonoxidative propane dehydrogenation. ACS Catal. 2020, 10, 8933–8949.

    CAS  Google Scholar 

  31. Lee, J.; Ryou, Y.; Chan, X. J.; Kim, T. J.; Kim, D. H. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2 compared to CeO2. J. Phys. Chem. C 2016, 120, 25870–25879.

    CAS  Google Scholar 

  32. Lin, W. Y.; Herzing, A. A.; Kiely, C. J.; Wachs, I. E. Probing metal—support interactions under oxidizing and reducing conditions: In situ Raman and infrared spectroscopic and scanning transmission electron microscopic-X-ray energy-dispersive spectroscopic investigation of supported platinum catalysts. J. Phys. Chem. C 2008, 112, 5942–5951.

    CAS  Google Scholar 

  33. Gu, Y. F.; Shao, S. J.; Sun, W.; Xia, H. Q.; Gao, X. H.; Dai, Q. G.; Zhan, W. C.; Wang, X. Y. The oxidation of chlorinated organic compounds over W-modified Pt/CeO2 catalysts. J. Catal. 2019, 380, 375–386.

    CAS  Google Scholar 

  34. Wang, H.; Cao, F. X.; Song, Y. H.; Yang, G. Q.; Ge, H. Q.; Liu, Z. T.; Qu, Y. Q.; Liu, Z. W. Two-step hydrothermally synthesized Ce1−xZrxO2 for oxidative dehydrogenation of ethylbenzene with carbon dioxide. J. CO2Util. 2019, 34, 99–107.

    Google Scholar 

  35. Vita, A.; Italiano, C.; Fabiano, C.; Pino, L.; Laganà, M.; Recupero, V. Hydrogen-rich gas production by steam reforming of n-dodecane: Part I: Catalytic activity of Pt/CeO2 catalysts in optimized bed configuration. Appl. Catal. B 2016, 199, 350–360.

    CAS  Google Scholar 

  36. Liu, H. H.; Wang, Y.; Jia, A. P.; Wang, S. Y.; Luo, M. F.; Lu, J. Q. Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: A reaction at Pt—CeO2 interface. Appl. Surf. Sci. 2014, 314, 725–734.

    CAS  Google Scholar 

  37. Yan, D. F.; Li, T.; Liu, P.; Mo, S. P.; Zhong, J. P.; Ren, Q. M.; Sun, Y. H.; Cheng, H. R.; Fu, M. L.; Wu, J. L. et al. In-situ atmosphere thermal pyrolysis of spindle-like Ce(OH)CO3 to fabricate Pt/CeO2 catalysts: Enhancing Pt—O—Ce bond intensity and boosting toluene degradation. Chemosphere 2021, 279, 130658.

    CAS  Google Scholar 

  38. Dutta, G.; Waghmare, U. V.; Baidya, T.; Hegde, M. S. Hydrogen spillover on CeO2/Pt: Enhanced storage of active hydrogen. Chem. Mater. 2007, 19, 6430–6436.

    CAS  Google Scholar 

  39. Wang, H. R.; Huang, H. W.; Bashir, K.; Li, C. Y. Isolated Sn on mesoporous silica as a highly stable and selective catalyst for the propane dehydrogenation. Appl. Catal. A 2020, 590, 117291.

    CAS  Google Scholar 

  40. Tan, W.; Xie, S. H.; Cai, Y. D.; Wang, M. Y.; Yu, S. H.; Low, K. B.; Li, Y. J.; Ma, L.; Ehrlich, S. N.; Gao, F. et al. Transformation of highly stable Pt single sites on defect engineered ceria into robust Pt clusters for vehicle emission control. Environ. Sci. Technol. 2021, 55, 12607–12618.

    CAS  Google Scholar 

  41. Wang, S.; Han, K. H.; Deng, Z. Y.; Wang, F. G. CeO2 nanorods decorated with Pt nanoparticles as catalysts for oxidative elimination of formaldehyde. ACS Appl. Nano Mater. 2022, 5, 10036–10046.

    CAS  Google Scholar 

  42. Devaiah, D.; Reddy, L. H.; Park, S. E.; Reddy, B. M. Ceria-zirconia mixed oxides: Synthetic methods and applications. Catal. Rev. 2018, 60, 177–277.

    CAS  Google Scholar 

  43. Li, Y.; Wei, Z. H.; Gao, F.; Kovarik, L.; Baylon, R. A. L.; Peden, C. H. F.; Wang, Y. Effect of oxygen defects on the catalytic performance of VOx/CeO2 catalysts for oxidative dehydrogenation of methanol. ACS Catal. 2015, 5, 3006–3012.

    CAS  Google Scholar 

  44. Daniel, M.; Loridant, S. Probing reoxidation sites by in situ Raman spectroscopy: Differences between reduced CeO2 and Pt/CeO2. J. Raman Spectrosc. 2012, 43, 1312–1319.

    CAS  Google Scholar 

  45. Wang, H. Z.; Zhang, W.; Jiang, J. W.; Sui, Z. J.; Zhu, Y. A.; Ye, G. H.; Chen, D.; Zhou, X. G.; Yuan, W. K. The role of H2S addition on Pt/Al2O3 catalyzed propane dehydrogenation: A mechanistic study. Catal. Sci. Technol. 2019, 9, 867–876.

    CAS  Google Scholar 

  46. Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409.

    CAS  Google Scholar 

  47. Wang, Q.; Tichit, D.; Meunier, F.; Guesmi, H. Combined DRIFTS and DFT study of CO adsorption and segregation modes in Pt-Sn nanoalloys. J. Phys. Chem. C 2020, 124, 9979–9989.

    CAS  Google Scholar 

  48. Arteaga, G. J.; Anderson, J. A.; Rochester, C. H. FTIR study of CO adsorption on coked Pt-Sn/Al2O3 catalysts. Catal. Letters 1999, 58, 189–194.

    CAS  Google Scholar 

  49. Balakrishnan, K.; Schwank, J. FTIR study of bimetallic Pt-Sn/Al2O3 catalysts. J. Catal. 1992, 138, 491–499.

    CAS  Google Scholar 

  50. Ye, C. L.; Peng, M.; Wang, Y. H.; Zhang, N. Q.; Wang, D. S.; Jiao, M. L.; Miller, J. T. Surface hexagonal Pt1Sn1 intermetallic on Pt nanoparticles for selective propane dehydrogenation. ACS Appl. Mater. Interfaces 2020, 12, 25903–25909.

    CAS  Google Scholar 

  51. Nguyen, T. D.; Zheng, W. Q.; Celik, F. E.; Tsilomelekis, G. CO2-assisted ethane oxidative dehydrogenation over MoOx catalysts supported on reducible CeO2-TiO2. Catal. Sci. Technol. 2021, 11, 5791–5801.

    CAS  Google Scholar 

  52. Zhang, Y. W.; Zhou, Y. M.; Qiu, A. D.; Wang, Y.; Xu, Y.; Wu, P. C. Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter. Catal. Commun. 2006, 7, 860–866.

    CAS  Google Scholar 

  53. Bariås, O. A.; Holmen, A.; Blekkan, E. A. Propane dehydrogenation over supported Pt and Pt-Sn catalysts: Catalyst preparation, characterization, and activity measurements. J. Catal. 1996, 158, 1–12.

    Google Scholar 

  54. Yarusov, I. B.; Zatolokina, E. V.; Shitova, N. V.; Belyi, A. S.; Ostrovskii, N. M. Propane dehydrogenation over Pt-Sn catalysts. Catal. Today 1992, 13, 655–658.

    CAS  Google Scholar 

  55. Madon, R. J.; Boudart, M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Ind. Eng. Chem. Fundamen. 1982, 21, 438–447.

    CAS  Google Scholar 

  56. Zhang, M. T.; Wang, M.; Xu, B. J.; Ma, D. How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 2019, 3, 2876–2883.

    Google Scholar 

  57. Luo, Q. X.; Zhang, X. K.; Hou, B. L.; Chen, J. G.; Zhu, C.; Liu, Z. W.; Liu, Z. T.; Lu, J. Catalytic function of VOx/Al2O3 for oxidative dehydrogenation of propane: Support microstructure-dependent mass transfer and diffusion. Catal. Sci. Technol. 2018, 8, 4864–4876.

    CAS  Google Scholar 

  58. Rigamonti, M. G.; Shah, M.; Gambu, T. G.; Saeys, M.; Dusselier, M. Reshaping the role of CO2 in propane dehydrogenation: From waste gas to platform chemical. ACS Catal. 2022, 12, 9339–9358.

    CAS  Google Scholar 

  59. Kamiuchi, N.; Matsui, T.; Kikuchi, R.; Eguchi, K. Nanoscopic observation of strong chemical interaction between Pt and tin oxide. J. Phys. Chem. C 2007, 111, 16470–16476.

    CAS  Google Scholar 

  60. Kamiuchi, N.; Taguchi, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Sintering and redispersion of platinum catalysts supported on tin oxide. Appl. Catal. B 2009, 89, 65–72.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21636006) and the Fundamental Research Funds for the Central Universities (No. GK201901001). G. Q. Y. acknowledges support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evgenii V. Kondratenko or Zhong-Wen Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, GQ., Ren, X., Kondratenko, V.A. et al. Promotional nature of Sn on Pt/CeO2 for the oxidative dehydrogenation of propane with carbon dioxide. Nano Res. 16, 6237–6250 (2023). https://doi.org/10.1007/s12274-022-5316-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5316-0

Keywords

Navigation