Skip to main content
Log in

A flexible dual-function capacitive sensor enhanced by loop-patterned fibrous electrode and doped dielectric pillars for spatial perception

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The integrated perception capable of detecting and monitoring varieties of activities is one of the ultimate purposes of wearable electronics and intelligent robots. Limited by the space occupation, it lacks practical feasibility to stack multiple types of single sensors on each other. Herein, a high-sensitivity dual-function capacitive sensor with proximity sensing and pressure sensing is proposed. The fringing electric field can be confined in the proximity-sensitive area by fibrous loop-patterned electrode, leading to more stolen charges when object approaching and thus a high proximity sensitivity. The high-permittivity doped structured dielectric layer reduces the compressive stiffness and enhances the rate of compression-caused increase in the equivalent relative permittivity of the dielectric layer, resulting in a larger increase in capacitance and thus a high pressure sensitivity. The electrodes and dielectric layer together compose the capacitor and act as the sensor without taking up additional space. The decoupling of proximity-sensing and pressure-sensing modes can be achieved by decrease or increase in capacitance. Combined with array distribution and sequential scanning, the sensors can be used for detection of motion trajectory, contour recognition, and pressure distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y. S.; Lo, C. Y.; Ruan, L. C.; Pi, C. H.; Kim, C.; Alsaid, Y.; Frenkel, I.; Rico, R.; Tsao, T. C.; He, X. M. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robot. 2021, 6, eabd5483.

    Article  Google Scholar 

  2. Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. N. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914.

    Article  Google Scholar 

  3. Wang, H. B.; Totaro, M.; Beccai, L. Toward perceptive soft robots: Progress and challenges. Adv. Sci. 2018, 5, 1800541.

    Article  Google Scholar 

  4. Windmiller, J. R.; Wang, J. Wearable electrochemical sensors and biosensors: A review. Electroanalysis 2013, 25, 29–46.

    Article  CAS  Google Scholar 

  5. Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.

    Article  Google Scholar 

  6. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

    Article  CAS  Google Scholar 

  7. Zheng, Y. B.; Tang, N.; Omar, R.; Hu, Z. P.; Duong, T.; Wang, J.; Wu, W. W.; Haick, H. Smart materials enabled with artificial intelligence for healthcare wearables. Adv. Funct. Mater. 2021, 31, 2105482.

    Article  CAS  Google Scholar 

  8. Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

    Article  CAS  Google Scholar 

  9. Amit, M.; Chukoskie, L.; Skalsky, A. J.; Garudadri, H.; Ng, T. N. Flexible pressure sensors for objective assessment of motor disorders. Adv. Funct. Mater. 2019, 30, 1905241.

    Article  Google Scholar 

  10. Gerratt, A. P.; Michaud, H. O.; Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 2015, 25, 2287–2295.

    Article  CAS  Google Scholar 

  11. Wang, X. D.; Dong, L.; Zhang, H. L.; Yu, R. M.; Pan, C. F.; Wang, Z. L. Recent progress in electronic skin. Adv. Sci. 2015, 2, 1500169.

    Article  Google Scholar 

  12. McEvoy, M. A.; Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 2015, 347, 1261689.

    Article  CAS  Google Scholar 

  13. Chu, Z. M.; Jiao, W. C.; Huang, Y. F.; Zheng, Y. T.; Wang, R. G.; He, X. D. Superhydrophobic gradient wrinkle strain sensor with ultrahigh sensitivity and broad strain range for motion monitoring. J. Mater. Chem. A 2021, 9, 9634–9643.

    Article  CAS  Google Scholar 

  14. Feng, B.; Jiang, X.; Zou, G. S.; Wang, W. A.; Sun, T. M.; Yang, H.; Zhao, G. L.; Dong, M. Y.; Xiao, Y.; Zhu, H. W. et al. Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy. Adv. Funct. Mater. 2021, 31, 2102359.

    Article  CAS  Google Scholar 

  15. Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetricnanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

    Article  CAS  Google Scholar 

  16. Bai, N. N.; Wang, L.; Wang, Q.; Deng, J.; Wang, Y.; Lu, P.; Huang, J.; Li, G.; Zhang, Y.; Yang, J. L. et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209.

    Article  CAS  Google Scholar 

  17. Yang, J.; Wei, D. P.; Tang, L. L.; Song, X. F.; Luo, W.; Chu, J.; Gao, T. P.; Shi, H. F.; Du, C. L. Wearable temperature sensor based on graphene nanowalls. RSC Adv. 2015, 5, 25609–25615.

    Article  CAS  Google Scholar 

  18. Liu, G. F.; Chen, X. L.; Li, X. M.; Wang, C. H.; Tian, H. M.; Chen, X. M.; Nie, B. B.; Shao, J. Y. Flexible, equipment-wearable piezoelectric sensor with piezoelectricity calibration enabled by in-situ temperature self-sensing. IEEE Trans. Ind. Electron. 2022, 69, 6381–6390.

    Article  Google Scholar 

  19. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

    Article  Google Scholar 

  20. Zhang, Y. L.; Fang, Y. S.; Li, J.; Zhou, Q. H.; Xiao, Y. J.; Zhang, K.; Luo, B. B.; Zhou, J.; Hu, B. Dual-mode electronic skin with integrated tactile sensing and visualized injury warning. ACS Appl. Mater. Interfaces 2017, 9, 37493–37500.

    Article  CAS  Google Scholar 

  21. Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. A. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 2018, 1, 314–321.

    Article  Google Scholar 

  22. Yao, S. S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345–2352.

    Article  CAS  Google Scholar 

  23. Luo, Y. S.; Shao, J. Y.; Chen, S. R.; Chen, X. L.; Tian, H. M.; Li, X. M.; Wang, L.; Wang, D. R.; Lu, B. H. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Appl. Mater. Interfaces 2019, 11, 17796–17803.

    Article  CAS  Google Scholar 

  24. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. A. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  CAS  Google Scholar 

  25. Cotton, D. P. J.; Graz, I. M.; Lacour, S. P. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 2009, 9, 2008–2009.

    Article  Google Scholar 

  26. Ji, B.; Zhou, Q.; Hu, B.; Zhong, J. W.; Zhou, J.; Zhou, B. P. Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range. Adv. Mater. 2021, 33, 2100859.

    Article  CAS  Google Scholar 

  27. Yuan, H. Y.; Tao, J. F.; Li, N. X.; Karmakar, A.; Tang, C. H.; Cai, H.; Pennycook, S. J.; Singh, N.; Zhao, D. On-chip tailorability of capacitive gas sensors integrated with metal-organic framework films. Angew. Chem., Int. Ed. 2019, 58, 14089–14094.

    Article  CAS  Google Scholar 

  28. Sui, Y. K.; Atreya, M.; Dahal, S.; Gopalakrishnan, A.; Khosla, R.; Whiting, G. L. Controlled biodegradation of an additively fabricated capacitive soil moisture sensor. ACS Sustainable Chem. Eng. 2021, 9, 2486–2495.

    Article  CAS  Google Scholar 

  29. Lee, H. K.; Chang, S. I.; Yoon, E. Dual-mode capacitive proximity sensor for robot application: Implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes. IEEE Sens. J. 2009, 9, 1748–1755.

    Article  Google Scholar 

  30. Zhang, B.; Xiang, Z. M.; Zhu, S. W.; Hu, Q. Y.; Cao, Y. Z.; Zhong, J. W.; Zhong, Q. Z.; Wang, B.; Fang, Y. S.; Hu, B. et al. Dual functional transparent film for proximity and pressure sensing. Nano Res. 2014, 7, 1488–1496.

    Article  Google Scholar 

  31. Kang, M.; Kim, J.; Jang, B.; Chae, Y.; Kim, J. H.; Ahn, J. H. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 2017, 11, 7950–7957.

    Article  CAS  Google Scholar 

  32. Sarwar, M. S.; Dobashi, Y.; Preston, C.; Wyss, J. K. M.; Mirabbasi, S.; Madden, J. D. W. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array. Sci. Adv. 2017, 3, e1602200.

    Article  Google Scholar 

  33. Khan, M. B.; Kim, D. H.; Han, J. H.; Saif, H.; Lee, H.; Lee, Y.; Kim, M.; Jang, E.; Hong, S. K.; Joe, D. J. et al. Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit. Nano Energy 2019, 58, 211–219.

    Article  CAS  Google Scholar 

  34. Jung, Y.; Choi, J.; Lee, W.; Ko, J. S.; Park, I.; Cho, H. Irregular microdome structure-based sensitive pressure sensor using internal popping of microspheres. Adv. Funct. Mater. 2022, 32, 2201147.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFB2011500), the National Natural Science Foundation of China (Nos. 52025055 and 51905415), Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University, the China Gas Turbine Establishment of Aero Engine Corporation of China (No. GJCZ-2019-0039), the National Postdoctoral Program for Innovative Talents (No. BX20180251), Young Talent Fund of University Association for Science and Technology in Shaanxi, China (No. 20200404), Basic Research Program of Natural Science of Shaanxi Province of China (Nos.2019JLM-5 and 2021JLM-42), and Shaanxi University Youth Innovation Team.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoliang Chen or Jinyou Shao.

Electronic Supplementary Material

12274_2022_5309_MOESM1_ESM.pdf

A flexible dual-function capacitive sensor enhanced by loop-patterned fibrous electrode and doped dielectric pillars for spatial perception

Supplementary material, approximately 22.2 MB.

Supplementary material, approximately 16.1 MB.

Supplementary material, approximately 29.1 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Chen, X., Li, X. et al. A flexible dual-function capacitive sensor enhanced by loop-patterned fibrous electrode and doped dielectric pillars for spatial perception. Nano Res. 16, 7550–7558 (2023). https://doi.org/10.1007/s12274-022-5309-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5309-z

Keywords

Navigation