Skip to main content
Log in

Dual functional transparent film for proximity and pressure sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Over the past few years, the rapid development of tactile sensing technology has contributed significantly to the realization of intuitional touch control and intelligent human-machine interaction. Apart from physical touch or pressure sensing, proximity sensing as a complementary function can extend the detection mode of common single functional tactile sensors. In this work, we present a transparent, matrix-structure dual functional capacitive sensor which integrates the capability of proximity and pressure sensing in one device, and the excellent spatial resolution offered by the isolated response of capacitive pixels enables us to realize precise location identification of approaching objects and loaded pressure with fast response, high stability and high reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maheshwari, V.; Saraf, R. F. High-resolution thin-film device to sense texture by touch. Science 2006, 312, 1501–1504.

    Article  Google Scholar 

  2. Hu, B.; Chen, W.; Zhou, J. High performance flexible sensor based on inorganic nanomaterials. Sensor. Actuat. B 2013, 176, 522–533.

    Article  Google Scholar 

  3. Hu, B.; Ding, Y.; Chen, W.; Kulkarni, D.; Shen, Y.; Tsukruk, V. V.; Wang, Z. L. External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor. Adv. Mater. 2010, 22, 5134–5139.

    Article  Google Scholar 

  4. Mannsfeld, S. C.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  Google Scholar 

  5. Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

    Article  Google Scholar 

  6. Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

    Article  Google Scholar 

  7. Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

    Article  Google Scholar 

  8. Ramuz, M.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. N. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 2012, 24, 3223–3227.

    Article  Google Scholar 

  9. Lee, H. K.; Chang, S. I.; Yoon, E. Dual-mode capacitive proximity sensor for robot application: Implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes. IEEE Sens. J. 2009, 9, 1748–1755.

    Article  Google Scholar 

  10. Sadler, D. J.; Ahn, C. H. On-chip eddy current sensor for proximity sensing and crack detection. Sensor. Actuat. A 2001, 91, 340–345.

    Article  Google Scholar 

  11. Gueissaz, F.; Piguet, D. The microreed, an ultra-small passive MEMS magnetic proximity sensor designed for portable applications. In The 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken, Switzerland, 2001, pp 269–273.

    Google Scholar 

  12. Canali, C.; De Cicco, G.; Morten, B.; Prudenziati, M.; Taroni, A. A temperature compensated ultrasonic sensor operating in air for distance and proximity measurements. IEEE Trans. Ind. Electron. 1982, IE-29, 336–341.

    Article  Google Scholar 

  13. Balek, D.; Kelley, R. Using gripper mounted infrared proximity sensors for robot feedback control. In 1985 IEEE International Conference on Robotics and Automation, St. Louis, USA, 1985, pp 282–287.

    Chapter  Google Scholar 

  14. Chen, Z. H.; Luo, R. C. Design and implementation of capacitive proximity sensor using microelectromechanical systems technology. IEEE Trans. Ind. Electron. 1998, 45, 886–894.

    Article  Google Scholar 

  15. Takamatsu, S.; Yamashita, T.; Imai, T.; Itoh, T. Fabric touch sensors using projected self-capacitive touch technique. Sens. Mater. 2013, 25, 627–634.

    Google Scholar 

  16. Kim, H. K.; Lee, S.; Yun, K. S. Capacitive tactile sensor array for touch screen application. Sensor. Actuat. A 2011, 165, 2–7.

    Article  Google Scholar 

  17. Guo, S. W.; Guo, J.; Ko, W. H. A monolithically integrated surface micromachined touch mode capacitive pressure sensor. Sensor. Actuat. A 2000, 80, 224–232.

    Article  Google Scholar 

  18. Ko, W. H.; Wang, Q. Touch mode capacitive pressure sensors. Sensor. Actuat. A 1999, 75, 242–251.

    Article  Google Scholar 

  19. Zhu, S. W.; Gao, Y.; Hu, B.; Li, J.; Su, J.; Fan, Z. Y.; Zhou, J. Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 2013, 24, 335202.

    Article  Google Scholar 

  20. Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414.

    Article  Google Scholar 

  21. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

    Article  Google Scholar 

  22. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

    Article  Google Scholar 

  23. Vandeparre, H.; Watson, D.; Lacour, S. P. Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization. Appl. Phys. Lett. 2013, 103, 204103.

    Article  Google Scholar 

  24. Hu, W. L.; Niu, X. F.; Zhao, R.; Pei, Q. B. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 2013, 102, 083303.

    Article  Google Scholar 

  25. Yao, S. S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345–2352.

    Article  Google Scholar 

  26. Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  27. Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  Google Scholar 

  28. Kim, T. Y.; Kim, Y. W.; Lee, H. S.; Kim, H.; Yang, W. S.; Suh, K. S. Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Funct. Mater. 2013, 23, 1250–1255.

    Article  Google Scholar 

  29. Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.

    Article  Google Scholar 

  30. Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004.

    Article  Google Scholar 

  31. Barrett, G.; Omote, R. Projected-capacitive touch technology. Information Display 2010, 3, 16–21.

    Google Scholar 

  32. Wang, T.; Blankenship, T. Projected capacitive touch systems from the controller point of view. Information Display 2011, 3, 8–11.

    Google Scholar 

  33. Tartagni, M.; Guerrieri, R. A fingerprint sensor based on the feedback capacitive sensing scheme. IEEE J. Solid-State Circuits 1998, 33, 133–142.

    Article  Google Scholar 

  34. Cotton, D. P. J.; Graz, I. M.; Lacour, S. P. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 2009, 9, 2008–2009.

    Article  Google Scholar 

  35. Li, N.; Zhu, H. Y.; Wang, W. Y.; Gong, Y. Parallel double-plate capacitive proximity sensor modelling based on effective theory. AIP Adv. 2014, 4, 027119.

    Article  Google Scholar 

  36. Ko, S.; Shin, H.; Lee, J.; Jang, H.; So, B. C.; Yun, I.; Lee, K. Low noise capacitive sensor for multi-touch mobile handset’s applications. In 2010 IEEE Asian Solid-State Circuits Conference (A-SSCC), Beijing, China, 2010, pp 1–4.

    Google Scholar 

  37. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Article  Google Scholar 

  38. Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970.

    Article  Google Scholar 

  39. Kane, B. J.; Cutkosky, M. R.; Kovacs, G. T. A traction stress sensor array for use in high-resolution robotic tactile imaging. J. Microelectromech. Syst. 2000, 9, 425–434.

    Article  Google Scholar 

  40. He, M. X.; Liu, R.; Li, Y.; Wang, H.; Lu, X.; Ding, G. F.; Wu, J. J.; Zhang, T.; Zhao, X. L. Tactile probing system based on micro-fabricated capacitive sensor. Sensor. Actuat. A 2013, 194, 128–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Xiang, Z., Zhu, S. et al. Dual functional transparent film for proximity and pressure sensing. Nano Res. 7, 1488–1496 (2014). https://doi.org/10.1007/s12274-014-0510-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0510-3

Keywords

Navigation