Skip to main content
Log in

Optimization on transport of charge carriers in cathode of sulfide electrolyte-based solid-state lithium-sulfur batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) batteries are considered as promising candidates for novel energy storage technology that achieves energy density of 500 Wh·kg−1. However, poor cycle stability resulting from notorious shuttle effect and the safety concerns deriving from flammability of ether-based electrolyte hinder the practical application of Li-S batteries. Because of low solubility to polysulfide, high ionic conductivity, and safety property, sulfide-based electrolytes can fundamentally address above issues. It is widely known that the effective transports of both electrons and ions are basic requirement for redox reaction of active materials in cathode. Thereby, construction of fast and stable ionic and electronic transport paths in cathode is especially pivotal for cycle stability of solid-state Li-S batteries (SSLSBs). In this review, we provide research progresses on facilitating transport of charge carriers in composite cathode of SSLSBs. From perspective of materials, intrinsically conductivity of electrolyte and carbon shows dramatic effect on migration of charge carriers in cathode of SSLSBs, thereby the conductive additives are summarized in the manuscript. Additionally, the charge transport in cathode of SSLSBs fully depends on the physical contact between active materials and conductive additives, therefore we summarized the strategies optimizing interfacial contact and reducing interfacial resistance. Finally, potential future research directions and prospects for SSLSBs with improved energy density and cycle performance are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, L. L.; Chen, B. B.; Ma, J.; Cui, G. L.; Chen, L. Q. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 2018, 47, 6505–6602.

    Article  CAS  Google Scholar 

  2. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

    Article  CAS  Google Scholar 

  3. Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

    Article  CAS  Google Scholar 

  4. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  CAS  Google Scholar 

  5. Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

    Article  CAS  Google Scholar 

  6. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    Article  CAS  Google Scholar 

  7. Chen, H.; Zhou, G. M.; Boyle, D.; Wan, J. Y.; Wang, H. X.; Lin, D. C.; Mackanic, D.; Zhang, Z. W.; Kim, S. C.; Lee, H. R. et al. Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium-sulfur battery. Matter 2020, 2, 1605–1620.

    Article  Google Scholar 

  8. Pan, H. L.; Chen, J. Z.; Cao, R. G.; Murugesan, V.; Rajput, N. N.; Han, K. S.; Persson, K.; Estevez, L.; Engelhard, M. H.; Zhang, J. G. et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth. Nat. Energy 2017, 2, 813–820.

    Article  CAS  Google Scholar 

  9. Seh, Z. W.; Yu, J. H.; Li, W. Y.; Hsu, P. C.; Wang, H. T.; Sun, Y. M.; Yao, H. B.; Zhang, Q. F.; Cui, Y. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 2014, 5, 5017.

    Article  CAS  Google Scholar 

  10. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  11. Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

    Article  CAS  Google Scholar 

  12. Nanda, S.; Bhargav, A.; Manthiram, A. Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition. Joule 2020, 4, 1121–1135.

    Article  CAS  Google Scholar 

  13. Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.

    Article  CAS  Google Scholar 

  14. Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.

    Article  CAS  Google Scholar 

  15. Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2011, 7, 11203.

    Article  Google Scholar 

  16. Babu, G.; Ababtain, K.; Ng, K. Y. S.; Arava, L. M. R. Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration. Sci. Rep. 2015, 5, 8763.

    Article  CAS  Google Scholar 

  17. Fan, C. Y.; Zheng, Y. P.; Zhang, X. H.; Shi, Y. H.; Liu, S. Y.; Wang, H. C.; Wu, X. L.; Sun, H. Z.; Zhang, J. P. High-performance and low-temperature lithium-sulfur batteries: Synergism of thermodynamic and kinetic regulation. Adv. Energy Mater. 2018, 8, 1703638.

    Article  Google Scholar 

  18. Fu, Y. S.; Wu, Z.; Yuan, Y. F.; Chen, P.; Yu, L.; Yuan, L.; Han, Q. R.; Lan, Y. J.; Bai, W. X.; Kan, E. J. et al. Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide. Nat. Commun. 2020, 11, 845.

    Article  CAS  Google Scholar 

  19. Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2101006.

    Article  CAS  Google Scholar 

  20. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  CAS  Google Scholar 

  21. Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486.

    Article  CAS  Google Scholar 

  22. Lin, H. B.; Zhang, S. L.; Zhang, T. R.; Ye, H. L.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1902096.

    Article  CAS  Google Scholar 

  23. Jin, Y.; Liu, K.; Lang, J. L.; Jiang, X.; Zheng, Z. K.; Su, Q. H.; Huang, Z. Y.; Long, Y. Z.; Wang, C. A.; Wu, H. et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule 2020, 4, 262–274.

    Article  CAS  Google Scholar 

  24. Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Mater. Energy 2018, 8, 1702657.

    Article  Google Scholar 

  25. Xia, S. X.; Wu, X. S.; Zhang, Z. C.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785.

    Article  CAS  Google Scholar 

  26. Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74–96.

    Article  CAS  Google Scholar 

  27. Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

    Article  CAS  Google Scholar 

  28. Liu, M.; Zhou, D.; He, Y. B.; Fu, Y. Z.; Qin, X. Y.; Miao, C.; Du, H. D.; Li, B. H.; Yang, Q. H.; Lin, Z. Q. et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 2016, 22, 278–289.

    Article  CAS  Google Scholar 

  29. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances andprospects. Chem 2019, 5, 2326–2352.

    Article  CAS  Google Scholar 

  30. Fang, R. Y.; Xu, H. H.; Xu, B. Y.; Li, X. Y.; Li, Y. T.; Goodenough, J. B. Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Adv. Funct. Mater. 2021, 31, 2001812.

    Article  CAS  Google Scholar 

  31. Lei, D. N.; Shi, K.; Ye, H.; Wan, Z. P.; Wang, Y. Y.; Shen, L.; Li, B. H.; Yang, Q. H.; Kang, F. Y.; He, Y. B. Progress and perspective of solid-state lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707570.

    Article  Google Scholar 

  32. Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

    Article  CAS  Google Scholar 

  33. Zhang, Z. Z.; Shao, Y. J.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976.

    Article  CAS  Google Scholar 

  34. Wang, C. H.; Liang, J. W.; Zhao, Y.; Zheng, M.; Li, X. N.; Sun, X. L. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14, 2577–2619.

    Article  CAS  Google Scholar 

  35. Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

    Article  CAS  Google Scholar 

  36. Chen, R. J.; Qu, W. J.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487–516.

    Article  CAS  Google Scholar 

  37. Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

    Article  CAS  Google Scholar 

  38. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S—P2S5 glasses. Adv. Mater. 2005, 17, 918–921.

    Article  CAS  Google Scholar 

  39. Sahu, G.; Lin, Z.; Li, J. C.; Liu, Z. C.; Dudney, N.; Liang, C. D. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 2014, 7, 1053–1058.

    Article  Google Scholar 

  40. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

    Article  CAS  Google Scholar 

  41. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem., Int. Ed. 2019, 58, 8681–8686.

    Article  CAS  Google Scholar 

  42. Banik, A.; Liu, Y. S.; Ohno, S.; Rudel, Y.; Jiménez-Solano, A.; Gloskovskii, A.; Vargas-Barbosa, N. M.; Mo, Y. F.; Zeier, W. G. Can substitutions affect the oxidative stability of lithium argyrodite solid electrolytes? ACS Appl. Energy Mater. 2022, 5, 2045–2053.

    Article  CAS  Google Scholar 

  43. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

    Article  CAS  Google Scholar 

  44. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4417.

    Article  CAS  Google Scholar 

  45. Wang, C. H.; Adair, K.; Sun, X. L. All-solid-state lithium metal batteries with sulfide electrolytes: Understanding interfacial ion and electron transport. Acc. Mater. Res. 2022, 3, 21–32.

    Article  CAS  Google Scholar 

  46. Xu, R. C.; Wu, Z.; Zhang, S. Z.; Wang, X. L.; Xia, Y.; Xia, X. H.; Huang, X. H.; Tu, J. P. Construction of all-solid-state batteries based on a sulfur-graphene composite and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte. Chem.—Eur. J. 2017, 23, 13950–13956.

    Article  CAS  Google Scholar 

  47. Zhang, Q.; Huang, N.; Huang, Z.; Cai, L.; Wu, J. H.; Yao, X. Y. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life. J. Energy Chem. 2020, 40, 151–155.

    Article  Google Scholar 

  48. Yao, X. Y.; Huang, N.; Han, F. D.; Zhang, Q.; Wan, H. L.; Mwizerwa, J. P.; Wang, C. S.; Xu, X. X. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 2017, 7, 1602923.

    Article  Google Scholar 

  49. Wu, Z. J.; Xie, Z. K.; Yoshida, A.; An, X. W.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Novel SeS2 doped Li2S—P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries. Chem. Eng. J. 2020, 380, 122419.

    Article  CAS  Google Scholar 

  50. Xu, R. C.; Xia, X. H.; Li, S. H.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. J. Mater. Chem. A 2017, 5, 6310–6317.

    Article  CAS  Google Scholar 

  51. Sakuda, A.; Sato, Y.; Hayashi, A.; Tatsumisago, M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium-sulfur batteries. Energy Technol. 2019, 7, 1900077.

    Article  CAS  Google Scholar 

  52. Suzuki, K.; Mashimo, N.; Ikeda, Y.; Yokoi, T.; Hirayama, M.; Kanno, R. High cycle capability of all-solid-state lithium-sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 2018, 1, 2373–2377.

    Article  CAS  Google Scholar 

  53. Wang, S.; Zhang, Y. B.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L. L.; Nan, C. W. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42279–42285.

    Article  CAS  Google Scholar 

  54. Ando, T.; Sato, Y.; Matsuyama, T.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. High-rate operation of sulfur/mesoporous activated carbon composite electrode for all-solid-state lithium-sulfur batteries. J. Ceram. Soc. Japan 2020, 128, 233–237.

    Article  CAS  Google Scholar 

  55. Han, Q. G.; Li, X. L.; Shi, X. X.; Zhang, H. Z.; Song, D. W.; Ding, F.; Zhang, L. Q. Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core—shell S@BP2000 nanocomposite. J. Mater. Chem. A 2019, 7, 3895–3902.

    Article  CAS  Google Scholar 

  56. Zhang, W.; Zhang, Y. Y.; Peng, L. F.; Li, S. P.; Wang, X. M.; Cheng, S. J.; Xie, J. Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy 2020, 76, 105083.

    Article  CAS  Google Scholar 

  57. Xu, R. C.; Xia, X. H.; Wang, X. L.; Xia, Y.; Tu, J. P. Tailored Li2S—P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 2829–2834.

    Article  CAS  Google Scholar 

  58. Lin, Z.; Liu, Z. C.; Fu, W. J.; Dudney, N. J.; Liang, C. D. Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2013, 52, 7460–7463.

    Article  CAS  Google Scholar 

  59. Tanibata, N.; Tsukasaki, H.; Deguchi, M.; Mori, S.; Hayashi, A.; Tatsumisago, M. A novel discharge—charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries. J. Mater. Chem. A 2017, 5, 11224–11228.

    Article  CAS  Google Scholar 

  60. Xu, R. C.; Yue, J.; Liu, S. F.; Tu, J. P.; Han, F. D.; Liu, P.; Wang, C. S. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density. ACS Energy Lett. 2019, 4, 1073–1079.

    Article  CAS  Google Scholar 

  61. Phuc, N. H. H.; Takaki, M.; Kazuhiro, H.; Hiroyuki, M.; Atsunori, M. Dual effect of MgS addition on Li2S ionic conductivity and all-solid-state Li-S cell performance. SN Appl. Sci. 2020, 2, 1803.

    Article  CAS  Google Scholar 

  62. Tufail, M. K.; Zhou, L.; Ahmad, N.; Chen, R. J.; Faheem, M.; Yang, L.; Yang, W. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chem. Eng. J. 2021, 407, 127149.

    Article  CAS  Google Scholar 

  63. Choi, S.; Yoon, I.; Nichols, W. T.; Shin, D. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2S—P2S5 solid electrolyte. Ceram. Int. 2018, 44, 7450–7453.

    Article  CAS  Google Scholar 

  64. Eom, M.; Son, S.; Park, C.; Noh, S.; Nichols, W. T.; Shin, D. High performance all-solid-state lithium-sulfur battery using a Li2S-VGCF nanocomposite. Electrochim. Acta 2017, 230, 279–284.

    Article  CAS  Google Scholar 

  65. Liu, M.; Wang, C.; Zhao, C. L.; van der Maas, E.; Lin, K.; Arszelewska, V. A.; Li, B. H.; Ganapathy, S.; Wagemaker, M. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements. Nat. Commun. 2021, 12, 5943.

    Article  CAS  Google Scholar 

  66. Ulissi, U.; Ito, S.; Hosseini, S. M.; Varzi, A.; Aihara, Y.; Passerini, S. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites. Adv. Energy Mater. 2018, 8, 1801462.

    Article  Google Scholar 

  67. Hosseini, S. M.; Varzi, A.; Ito, S.; Aihara, Y.; Passerini, S. High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. Energy Storage Mater. 2020, 27, 61–68.

    Article  Google Scholar 

  68. Mwizerwa, J. P.; Zhang, Q.; Han, F. D.; Wan, H. L.; Cai, L. T.; Wang, C. S.; Yao, X. Y. Sulfur-embedded FeS2 as a high-performance cathode for room temperature all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 18519–18525.

    Article  CAS  Google Scholar 

  69. Shi, J. M.; Liu, G. Z.; Weng, W.; Cai, L. T.; Zhang, Q.; Wu, J. H.; Xu, X. X.; Yao, X. Y. Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 14079–14086.

    Article  CAS  Google Scholar 

  70. Zhang, Q.; Mwizerwa, J. P.; Wan, H. L.; Cai, L. T.; Xu, X. X.; Yao, X. Y. Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. J. Mater. Chem. A 2017, 5, 23919–23925.

    Article  CAS  Google Scholar 

  71. Zhang, Q.; Yao, X. Y.; Mwizerwa, J. P.; Huang, N.; Wan, H. L.; Huang, Z.; Xu, X. X. FeS nanosheets as positive electrodes for all-solid-state lithium batteries. Solid State Ionics 2018, 318, 60–64.

    Article  CAS  Google Scholar 

  72. Zhang, Y. B.; Chen, R. J.; Liu, T.; Shen, Y.; Lin, Y. H.; Nan, C. W. High capacity, superior cyclic performances in all-solid-state lithium-ion batteries based on 78Li2S—22P2S5 glass-ceramic electrolytes prepared via simple heat treatment. ACS Appl. Mater. Interfaces 2017, 9, 28542–28548.

    Article  CAS  Google Scholar 

  73. Wang, S.; Xu, X. F.; Zhang, X.; Xin, C. Z.; Xu, B. Q.; Li, L. L.; Lin, Y. H.; Shen, Y.; Li, B. H.; Nan, C. W. High-performance Li6PS5Cl-based all-solid-state lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18612–18618.

    Article  CAS  Google Scholar 

  74. Yu, C.; Hageman, J.; Ganapathy, S.; van Eijck, L.; Zhang, L.; Adair, K. R.; Sun, X. L.; Wagemaker, M. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries. J. Mater. Chem. A 2019, 7, 10412–10421.

    Article  CAS  Google Scholar 

  75. Han, F. D.; Gao, T.; Zhu, Y. J.; Gaskell, K. J.; Wang, C. S. A battery made from a single material. Adv. Mater. 2015, 27, 3473–3483.

    Article  CAS  Google Scholar 

  76. Zhang, Y. B.; Chen, R. J.; Liu, T.; Xu, B. Q.; Zhang, X.; Li, L. L.; Lin, Y. H.; Nan, C. W.; Shen, Y. High capacity and superior cyclic performances of all-solid-state lithium batteries enabled by a glass-ceramics solo. ACS Appl. Mater. Interfaces 2018, 10, 10029–10035.

    Article  CAS  Google Scholar 

  77. Hakari, T.; Nagao, M.; Hayashi, A.; Tatsumisago, M. All-solid-state lithium batteries with Li3PS4 glass as active material. J. Power Sources 2015, 293, 721–725.

    Article  CAS  Google Scholar 

  78. Li, X. N.; Liang, J. W.; Luo, J.; Wang, C. H.; Li, X.; Sun, Q.; Li, R. Y.; Zhang, L.; Yang, R.; Lu, S. G. et al. High-performance Li-SeSx all-solid-state lithium batteries. Adv. Mater. 2019, 31, 1808100.

    Article  Google Scholar 

  79. Santhosha, A. L.; Nayak, P. K.; Pollok, K.; Langenhorst, F.; Adelhelm, P. Exfoliated MoS2 as electrode for all-solid-state rechargeable lithium-ion batteries. J. Phys. Chem. C 2019, 123, 12126–12134.

    Article  CAS  Google Scholar 

  80. Zhang, Q.; Ding, Z. G.; Liu, G. Z.; Wan, H. L.; Mwizerwa, J. P.; Wu, J. H.; Yao, X. Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2019, 23, 168–180.

    Article  Google Scholar 

  81. Zhang, Q.; Wan, H. L.; Liu, G. Z.; Ding, Z. G.; Mwizerwa, J. P.; Yao, X. Y. Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 2019, 57, 771–782.

    Article  CAS  Google Scholar 

  82. Cai, L. T.; Wan, H. L.; Zhang, Q.; Mwizerwa, J. P.; Xu, X. X.; Yao, X. Y. In situ coating of Li7P3S11 electrolyte on CuCo2S4/graphene nanocomposite as a high-performance cathode for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 33810–33816.

    Article  CAS  Google Scholar 

  83. Li, B.; Wang, P.; Xi, B. J.; Song, N.; An, X. G.; Chen, W. H.; Feng, J. K.; Xiong, S. L. In-situ embedding CoTe catalyst into 1D-2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 2022, 15, 8972–8982.

    Article  CAS  Google Scholar 

  84. Zhou, C. Y.; Wang, J.; Zhu, X. B.; Chen, K.; Ouyang, Y.; Wu, Y.; Miao, Y. E.; Liu, T. X. A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries. Nano Res. 2021, 14, 1541–1550.

    Article  CAS  Google Scholar 

  85. Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

    Article  CAS  Google Scholar 

  86. Yuan, H.; Huang, J. Q.; Peng, H. J.; Titirici, M. M.; Xiang, R.; Chen, R. J.; Liu, Q. B.; Zhang, Q. A review of functional binders in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1802107.

    Article  Google Scholar 

  87. Wang, L. L.; Ye, Y. S.; Chen, N.; Huang, Y. X.; Li, L.; Wu, F.; Chen, R. J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800919.

    Article  Google Scholar 

  88. Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.

    Article  CAS  Google Scholar 

  89. Huang, X.; Liu, C.; Lu, Y.; Xiu, T.; Jin, J.; Badding, M. E.; Wen, Z. Y. A Li-garnet composite ceramic electrolyte and its solid-state Li-S battery. J. Power Sources 2018, 382, 190–197.

    Article  CAS  Google Scholar 

  90. Hao, X. G.; Ma, J. B.; Cheng, X.; Zhong, G. M.; Yang, J. L.; Huang, L.; Ling, H. J.; Lai, C.; Lv, W.; Kang, F. Y. et al. Electron and ion co-conductive catalyst achieving instant transformation of lithium polysulfide towards Li2S. Adv. Mater. 2021, 33, 2105362.

    Article  CAS  Google Scholar 

  91. Kinoshita, S.; Okuda, K.; Machida, N.; Naito, M.; Sigematsu, T. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ionics 2014, 256, 97–102.

    Article  CAS  Google Scholar 

  92. Nagao, M.; Hayashi, A.; Tatsumisago, M. Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol. 2013, 1, 186–192.

    Article  CAS  Google Scholar 

  93. Zhang, Y. B.; Liu, T.; Zhang, Q. H.; Zhang, X.; Wang, S.; Wang, X. Z.; Li, L. L.; Fan, L. Z.; Nan, C. W.; Shen, Y. High-performance all-solid-state lithium-sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. J. Mater. Chem. A 2018, 6, 23345–23356.

    Article  CAS  Google Scholar 

  94. Nagao, M.; Suzuki, K.; Imade, Y.; Tateishi, M.; Watanabe, R.; Yokoi, T.; Hirayama, M.; Tatsumi, T.; Kanno, R. All-solid-state lithium-sulfur batteries with three-dimensional mesoporous electrode structures. J. Power Sources 2016, 330, 120–126.

    Article  CAS  Google Scholar 

  95. Dewald, G. F.; Ohno, S.; Hering, J. G. C.; Janek, J.; Zeier, W. G. Analysis of charge carrier transport toward optimized cathode composites for all-solid-state Li-S batteries. Batteries Supercaps 2021, 4, 183–194.

    Article  CAS  Google Scholar 

  96. Xu, S. Q.; Kwok, C. Y.; Zhou, L. D.; Zhang, Z. Z.; Kochetkov, I.; Nazar, L. F. A High capacity all solid-state Li-sulfur battery enabled by conversion—intercalation hybrid cathode architecture. Adv. Funct. Mater. 2021, 31, 2004239.

    Article  CAS  Google Scholar 

  97. Li, M. Y.; Liu, T.; Shi, Z.; Xue, W. J.; Hu, Y. S.; Li, H.; Huang, X. J.; Li, J.; Suo, L. M.; Chen, L. Q. Dense all-electrochem-active electrodes for all-solid-state lithium batteries. Adv. Mater. 2021, 33, 2008723.

    Article  CAS  Google Scholar 

  98. Nagao, M.; Hayashi, A.; Tatsumisago, M.; Ichinose, T.; Ozaki, T.; Togawa, Y.; Mori, S. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries. J. Power Sources 2015, 274, 471–476.

    Article  CAS  Google Scholar 

  99. Yan, H. F.; Wang, H. C.; Wang, D. H.; Li, X.; Gong, Z. L.; Yang, Y. In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 2019, 19, 3280–3287.

    Article  CAS  Google Scholar 

  100. Lin, Z.; Liu, Z. C.; Dudney, N. J.; Liang, C. D. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 2013, 7, 2829–2833.

    Article  CAS  Google Scholar 

  101. Jiang, H. Z.; Han, Y.; Wang, H.; Guo, Q. P.; Zhu, Y. H.; Xie, W.; Zheng, C. M.; Xie, K. In situ generated Li2S-LPS composite for all-solid-state lithium-sulfur battery. Ionics 2020, 26, 2335–2342.

    Article  CAS  Google Scholar 

  102. Han, F. D.; Yue, J.; Fan, X. L.; Gao, T.; Luo, C.; Ma, Z. H.; Suo, L. M.; Wang, C. S. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S Nanocomposite. Nano Lett. 2016, 16, 4521–4527.

    Article  CAS  Google Scholar 

  103. Xu, X. Y.; Cheng, J.; Li, Y. Y.; Nie, X. K.; Dai, L. N.; Ci, L. Li metal-free rechargeable all-solid-state Li2S/Si battery based on Li7P3S11 electrolyte. J. Solid State Electrochem. 2019, 23, 3145–3151.

    Article  CAS  Google Scholar 

  104. Wan, H. L.; Cai, L. T.; Han, F. D.; Mwizerwa, J. P.; Wang, C. S.; Yao, X. Y. Construction of 3D electronic/ionic conduction networks for all-solid-state lithium batteries. Small 2019, 15, 1905849.

    Article  CAS  Google Scholar 

  105. Santhosha, A. L.; Nazer, N.; Koerver, R.; Randau, S.; Richter, F. H.; Weber, D. A.; Kulisch, J.; Adermann, T.; Janek, J.; Adelhelm, P. Macroscopic displacement reaction of copper sulfide in lithium solid-state batteries. Adv. Energy Mater. 2020, 10, 2002394.

    Article  CAS  Google Scholar 

  106. Hayashi, A.; Ohtomo, T.; Mizuno, F.; Tadanaga, K.; Tatsumisago, M. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem. Commun. 2003, 5, 701–705.

    Article  CAS  Google Scholar 

  107. Yao, X. Y.; Liu, D.; Wang, C. S.; Long, P.; Peng, G.; Hu, Y. S.; Li, H.; Chen, L. Q.; Xu, X. X. High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 2016, 16, 7148–7154.

    Article  CAS  Google Scholar 

  108. Wan, H. L.; Peng, G.; Yao, X. Y.; Yang, J.; Cui, P.; Xu, X. X. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Mater. 2016, 4, 59–65.

    Article  Google Scholar 

  109. Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. J. Power Sources 2018, 374, 107–112.

    Article  CAS  Google Scholar 

  110. Wan, H. L.; Zhang, B.; Liu, S. F.; Zhang, J. X.; Yao, X. Y.; Wang, C. S. Understanding LiI—LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery. Nano Lett. 2021, 21, 8488–8494.

    Article  CAS  Google Scholar 

  111. Matsumura, T.; Nakano, K.; Kanno, R.; Hirano, A.; Imanishi, N.; Takeda, Y. Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries. J. Power Sources 2007, 174, 632–636.

    Article  CAS  Google Scholar 

  112. Aso, K.; Kitaura, H.; Hayashi, A.; Tatsumisago, M. Synthesis of nanosized nickel sulfide in high-boiling solvent for all-solid-state lithium secondary batteries. J. Mater. Chem. 2011, 21, 2987–2990.

    Article  CAS  Google Scholar 

  113. Aso, K.; Hayashi, A.; Tatsumisago, M. Synthesis of NiS-carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries. Electrochim. Acta 2012, 83, 448–453.

    Article  CAS  Google Scholar 

  114. Zhang, Q.; Peng, G.; Mwizerwa, J. P.; Wan, H. L.; Cai, L. T.; Xu, X. X.; Yao, X. Y. Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. J. Mater. Chem. A 2018, 6, 12098–12105.

    Article  CAS  Google Scholar 

  115. Trevey, J. E.; Stoldt, C. R.; Lee, S. H. High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries. J. Electrochem. Soc. 2011, 158, A1282.

    Article  CAS  Google Scholar 

  116. Cai, L. T.; Zhang, Q.; Mwizerwa, J. P.; Wan, H. L.; Yang, X. L.; Xu, X. X.; Yao, X. Y. Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances. ACS Appl. Mater. Interfaces 2018, 10, 10053–10063.

    Article  CAS  Google Scholar 

  117. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 2016, 28, 266–273.

    Article  CAS  Google Scholar 

  118. Koerver, R.; Walther, F.; Aygün, I.; Sann, J.; Dietrich, C.; Zeier, W. G.; Janek, J. Redox-active cathode interphases in solid-state batteries. J. Mater. Chem. A 2017, 5, 22750–22760.

    Article  CAS  Google Scholar 

  119. Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X. F.; Yang, H. D.; Banerjee, A.; Meng, Y. S. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 2019, 4, 2418–2427.

    Article  CAS  Google Scholar 

  120. Dewald, G. F.; Ohno, S.; Kraft, M. A.; Koerver, R.; Till, P.; Vargas-Barbosa, N. M.; Janek, J.; Zeier, W. G. Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem. Mater. 2019, 31, 8328–8337.

    Article  CAS  Google Scholar 

  121. Wang, S.; Tang, M. X.; Zhang, Q. H.; Li, B. H.; Ohno, S.; Walther, F.; Pan, R. J.; Xu, X. F.; Xin, C. Z.; Zhang, W. B. et al. Lithium argyrodite as solid electrolyte and cathode precursor for solid-state batteries with long cycle life. Adv. Energy Mater. 2021, 11, 2101370.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Scientific and Technological Innovation Project of Shandong (No. 2020CXGC010401), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA22010602), the National Natural Science Foundation of China (Nos. 52203150 and 52037006), CAS Key Technology Talent Program, Key Research and Development Plan of Shandong Province (No. 2019GHZ009), Qingdao Key Laboratory of Solar Energy Utilization and Energy Storage Technology, and the Public Projects of Zhejiang Province (No. LGG19E020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Tang or Guanglei Cui.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, Y., Liu, T. et al. Optimization on transport of charge carriers in cathode of sulfide electrolyte-based solid-state lithium-sulfur batteries. Nano Res. 16, 8139–8158 (2023). https://doi.org/10.1007/s12274-022-5291-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5291-5

Keywords

Navigation