Skip to main content
Log in

Efficient selective activation of sorbitol C–O bonds over C–C bonds on CoGa (221) generated by lattice-induction strategy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sorbitol is a primary platform compound in the conversion of cellulose. The conversion of sorbitol to C6 hydrocarbons requires a complete cleavage of C–O bonds and meanwhile the inhibition of C–C cleavage. Here, we demonstrated an efficient selective cleavage of C–O over C–C bond on the (221) facet of supported CoGa. A selectivity of 94% to C6 hydrocarbon with conversion of 97% has been achieved. The selective C–O cleavage was demonstrated by tuning the exposed facet as (221) or (110). The supported CoGa was prepared simply by reduction of Co and Ga-containing layered double hydroxides (CoZnGaAl-LDHs), and the exposed facets of CoGa crystallites were controlled by tailoring the temperature-programmed rate in the reduction. By reducing CoZnGaAl-LDHs, CoGa (221) was exposed with a temperature-programmed rate of 5 °C/min under the induction of ZnO lattice, while CoGa (110) was exposed with a rate of 10 °C/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem., Int. Ed. 2007, 46, 7164–7183.

    CAS  Google Scholar 

  2. Chatterjee, C.; Pong, F.; Sen, A. Chemical conversion pathways for carbohydrates. Green Chem. 2015, 17, 40–71.

    CAS  Google Scholar 

  3. Pang, J. F.; Sun, J. M.; Zheng, M. Y.; Li, H. Q.; Wang, Y.; Zhang, T. Transition metal carbide catalysts for biomass conversion: A review. Appl. Catal. B: Environ. 2019, 254, 510–522.

    CAS  Google Scholar 

  4. Dutta, S. Hydro(deoxygenation) reaction network of lignocellulosic oxygenates. ChemSusChem 2020, 13, 2894–2915.

    CAS  Google Scholar 

  5. Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118, 505–613.

    CAS  Google Scholar 

  6. Rey-Raap, N.; Ribeiro, L. S.; De Melo Órfão, J. J.; Figueiredo, J. L.; Pereira, M. F. R. Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Appl. Catal. B: Environ. 2019, 256, 117826.

    CAS  Google Scholar 

  7. Xu, S. G.; Wu, Y.; Li, J. M.; He, T.; Xiao, Y.; Zhou, C. Q.; Hu, C. W. Directing the simultaneous conversion of hemicellulose and cellulose in raw biomass to lactic acid. ACS Sustainable Chem. Eng. 2020, 8, 4244–4255.

    CAS  Google Scholar 

  8. Carlier, S.; Gripekoven, J.; Philippo, M.; Hermans, S. Ru on N-doped carbon supports for the direct hydrogenation of cellobiose into sorbitol. Appl. Catal. B: Environ. 2021, 282, 119515.

    CAS  Google Scholar 

  9. Lu, X. W.; Guo, C. M.; Zhang, M. Y.; Leng, L. P.; Horton, J. H.; Wu, W.; Li, Z. J. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Res. 2021, 14, 4347–4355.

    CAS  Google Scholar 

  10. Wang, D. D.; Al-Mamun, M.; Gong, W. B.; Lv, Y.; Chen, C.; Lin, Y.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Converting Co2+-impregnated g-C3N4 into N-doped CNTs-confined Co nanoparticles for efficient hydrogenation rearrangement reactions of furanic aldehydes. Nano Res. 2021, 14, 2846–2852.

    CAS  Google Scholar 

  11. Hu, L.; Lin, L.; Liu, S. J. Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2, 5-dimethylfuran. Ind. Eng. Chem. Res. 2014, 53, 9969–9978.

    CAS  Google Scholar 

  12. Tirsoaga, A.; El Fergani, M.; Nuns, N.; Simon, P.; Granger, P.; Parvulescu, V. I.; Coman, S. M. Multifunctional nanocomposites with non-precious metals and magnetic core for 5-HMF oxidation to FDCA. Appl. Catal. B: Environ. 2020, 278, 119309.

    CAS  Google Scholar 

  13. Sun, D. L.; Yamada, Y.; Sato, S.; Ueda, W. Glycerol as a potential renewable raw material for acrylic acid production. Green Chem. 2017, 19, 3186–3213.

    CAS  Google Scholar 

  14. Zhu, Y. R.; Zhao, W. F.; Zhang, J.; An, Z.; Ma, X. D.; Zhang, Z. J.; Jiang, Y. T.; Zheng, L. R.; Shu, X.; Song, H. Y. et al. Selective activation of C–OH, C–O—C, or C=C in furfuryl alcohol by engineered Pt sites supported on layered double oxides. ACS Catal. 2020, 10, 8032–8041.

    CAS  Google Scholar 

  15. Liu, Y. T.; Wang, R.; Qi, H. F.; Liu, X. Y.; Li, G. Y.; Wang, A. Q.; Wang, X. D.; Cong, Y.; Zhang, T.; Li, N. Synthesis of bio-based methylcyclopentadiene via direct hydrodeoxygenation of 3-methylcyclopent-2-enone derived from cellulose. Nat. Commun. 2021, 12, 46.

    CAS  Google Scholar 

  16. Chen, X.; Zheng, Y. N.; Zhang, Q.; Qiu, S. B.; Meng, Q. W.; Wu, X. P.; Wang, T. J. Controlling transformation of sorbitol into 1-hexanol over Ru-MoOx/Mo2C catalyst via aqueous-phase hydrodeoxygenation. ACS Sustainable Chem. Eng. 2021, 9, 9033–9044.

    CAS  Google Scholar 

  17. Deneyer, A.; Renders, T.; Van Aelst, J.; Van Den Bosch, S.; Gabriëls, D.; Sels, B. F. Alkane production from biomass: Chemo-, bio- and integrated catalytic approaches. Curr. Opin. Chem. Biol. 2015, 29, 40–48.

    CAS  Google Scholar 

  18. Xi, J. X.; Xia, Q. N.; Shao, Y.; Ding, D. Q.; Yang, P. P.; Liu, X. H.; Lu, G. Z.; Wang, Y. Q. Production of hexane from sorbitol in aqueous medium over Pt/NbOPO4 catalyst. Appl. Catal. B: Environ. 2016, 181, 699–706.

    CAS  Google Scholar 

  19. Huber, G. W.; Cortright, R. D.; Dumesic, J. A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew. Chem., Int. Ed. 2004, 116, 1575–1577.

    Google Scholar 

  20. Jiang, T.; Wang, T. J.; Ma, L. L.; Li, Y. P.; Zhang, Q.; Zhang, X. H. Investigation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts. Appl. Energy 2012, 90, 51–57.

    CAS  Google Scholar 

  21. Chen, K. Y.; Tamura, M.; Yuan, Z. L.; Nakagawa, Y.; Tomishige, K. One-pot conversion of sugar and sugar polyols to n-alkanes without C–C dissociation over the Ir-ReOx/SiO2 catalyst combined with H-ZSM-5. ChemSusChem 2013, 6, 613–621.

    CAS  Google Scholar 

  22. Liu, S. B.; Tamura, M.; Nakagawa, Y.; Tomishige, K. One-pot conversion of cellulose into n-hexane over the Ir-ReOx/SiO2 catalyst combined with HZSM-5. ACS Sustainable Chem. Eng. 2014, 2, 1819–1827.

    CAS  Google Scholar 

  23. Zhang, Q.; Jiang, T.; Li, B.; Wang, T. J.; Zhang, X. H.; Zhang, Q.; Ma, L. L. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41. ChemCatChem 2012, 4, 1084–1087.

    CAS  Google Scholar 

  24. Yang, X. K.; Jenkins, R. W.; Leal, J. H.; Moore, C. M.; Judge, E. J.; Semelsberger, T. A.; Sutton, A. D. Hydrodeoxygenation (HDO) of biomass derived ketones using supported transition metals in a continuous reactor. ACS Sustainable Chem. Eng. 2019, 7, 14521–14530.

    CAS  Google Scholar 

  25. Zhang, Q.; Wang, T. J.; Xu, Y.; Zhang, Q.; Ma, L. L. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water. Energy Convers. Manage. 2014, 77, 262–268.

    CAS  Google Scholar 

  26. Vilcocq, L.; Koerin, R.; Cabiac, A.; Especel, C.; Lacombe, S.; Duprez, D. New bifunctional catalytic systems for sorbitol transformation into biofuels. Appl. Catal. B: Environ. 2014, 148–149, 499–508.

    Google Scholar 

  27. Vilcocq, L.; Cabiac, A.; Especel, C.; Lacombe, S.; Duprez, D. Hydrocarbon fuel synthesis from sorbitol over bifunctional catalysts: Association of tungstated titania with platinum, palladium or iridium. Catal. Today 2015, 242, 91–100.

    CAS  Google Scholar 

  28. Xing, S. Y.; Liu, Y.; Liu, X. C.; Li, M.; Fu, J. Y.; Liu, P. F.; Lv, P. M.; Wang, Z. M. Solvent-free hydrodeoxygenation of bio-lipids into renewable alkanes over NiW bimetallic catalyst under mild conditions. Appl. Catal. B: Environ. 2020, 269, 118718.

    CAS  Google Scholar 

  29. De Beeck, B. O.; Dusselier, M.; Geboers, J.; Holsbeek, J.; Morré, E.; Oswald, S.; Giebeler, L.; Sels, B. F. Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ. Sci. 2015, 8, 230–240.

    Google Scholar 

  30. Godina, L. I.; Kirilin, A. V.; Tokarev, A. V.; Murzin, D. Y. Aqueous phase reforming of industrially relevant sugar alcohols with different chiralities. ACS Catal. 2015, 5, 2989–3005.

    CAS  Google Scholar 

  31. Jin, Z.; Yi, X. F.; Wang, L.; Xu, S. D.; Wang, C. T.; Wu, Q. M.; Wang, L. X.; Zheng, A. M.; Xiao, F. S. Metal—acid interfaces enveloped in zeolite crystals for cascade biomass hydrodeoxygenation. Appl. Catal. B: Environ. 2019, 254, 560–568.

    CAS  Google Scholar 

  32. Samikannu, A.; Konwar, L. J.; Rajendran, K.; Lee, C. C.; Shchukarev, A.; Virtanen, P.; Mikkola, J. P. Highly dispersed NbOPO4/SBA-15 as a versatile acid catalyst upon production of renewable jet-fuel from bio-based furanics via hydroxyalkylationalkylation (HAA) and hydrodeoxygenation (HDO) reactions. Appl. Catal. B: Environ. 2020, 272, 118987.

    CAS  Google Scholar 

  33. Yan, P. H.; Mensah, J.; Drewery, M.; Kennedy, E.; Maschmeyer, T.; Stockenhuber, M. Role of metal support during Ru-catalysed hydrodeoxygenation of biocrude oil. Appl. Catal. B: Environ. 2021, 281, 119470.

    CAS  Google Scholar 

  34. Kunkes, E. L.; Simonetti, D. A.; West, R. M.; Serrano-Ruiz, J. C.; Gärtner, C. A.; Dumesic, J. A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 2008, 322, 417–421.

    CAS  Google Scholar 

  35. Luo, J.; Arroyo-Ramírez, L.; Gorte, R. J.; Tzoulaki, D.; Vlachos, D. G. Hydrodeoxygenation of HMF over Pt/C in a continuous flow reactor. AIChE J. 2015, 61, 590–597.

    CAS  Google Scholar 

  36. Sun, F.; Chen, L. G.; Weng, Y. J.; Wang, T. J.; Qiu, S. B.; Li, Q. X.; Wang, C. G.; Zhang, Q.; Ma, L. L. Transformation of biomass polyol into hydrocarbon fuels in aqueous medium over Ru-Mo/CNT catalyst. Catal. Commun. 2017, 99, 30–33.

    CAS  Google Scholar 

  37. Kim, Y. T.; Dumesic, J. A.; Huber, G. W. Aqueous-phase hydrodeoxygenation of sorbitol: A comparative study of Pt/Zr phosphate and Pt-ReOx/C. J. Catal. 2013, 304, 72–85.

    CAS  Google Scholar 

  38. Fu, T. J.; Li, Z. H. Review of recent development in Co-based catalysts supported on carbon materials for Fischer—Tropsch synthesis. Chem. Eng. Sci. 2015, 135, 3–20.

    CAS  Google Scholar 

  39. Park, J. C.; Kang, S. W.; Kim, J. C.; Kwon, J. I.; Jang, S.; Rhim, G. B.; Kim, M.; Chun, D. H.; Lee, H. T.; Jung, H. et al. Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer—Tropsch reaction. Nano Res. 2017, 10, 1044–1055.

    CAS  Google Scholar 

  40. Yang, H. Y.; Zhang, C.; Gao, P.; Wang, H.; Li, X. P.; Zhong, L. S.; Wei, W.; Sun, Y. H. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598.

    CAS  Google Scholar 

  41. Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

    CAS  Google Scholar 

  42. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    CAS  Google Scholar 

  43. Li, Z. J.; Chen, Y. Y.; Lu, X. W.; Li, H. H.; Leng, L. P.; Zhang, T. L.; Horton, J. H. Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C–C cross-coupling of primary and secondary alcohols. Nano Res. 2022, 15, 4023–4031.

    CAS  Google Scholar 

  44. Xu, C. Y.; Wu, H. H.; Zhang, Z. R.; Zheng, B. X.; Zhai, J. X.; Zhang, K. L.; Wu, W.; Mei, X. L.; He, M. Y.; Han, B. X. Highly effective and chemoselective hydrodeoxygenation of aromatic alcohols. Chem. Sci. 2022, 13, 1629–1635.

    CAS  Google Scholar 

  45. Luo, J.; Arroyo-Ramírez, L.; Wei, J. F.; Yun, H.; Murray, C. B.; Gorte, R. J. Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor. Appl. Catal. A: Gen. 2015, 508, 86–93.

    CAS  Google Scholar 

  46. Eagan, N. M.; Chada, J. P.; Wittrig, A. M.; Buchanan, J. S.; Dumesic, J. A.; Huber, G. W. Hydrodeoxygenation of sorbitol to monofunctional fuel precursors over Co/TiO2. Joule 2017, 1, 178–199.

    CAS  Google Scholar 

  47. Luo, J.; Yun, H.; Mironenko, A. V.; Goulas, K.; Lee, J. D.; Monai, M.; Wang, C.; Vorotnikov, V.; Murray, C. B.; Vlachos, D. G. et al. Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo Nanocrystals. ACS Catal. 2016, 6, 4095–4104.

    CAS  Google Scholar 

  48. Jiang, Z. F.; Wan, W. M.; Lin, Z. X.; Xie, J. M.; Chen, J. G. Understanding the role of M/Pt(111) (M = Fe, Co, Ni, Cu) bimetallic surfaces for selective hydrodeoxygenation of furfural. ACS Catal. 2017, 7, 5758–5765.

    CAS  Google Scholar 

  49. Zhu, Y. R.; Guo, H.; Zhang, J.; An, Z.; Shu, X.; Song, H. Y.; Xiang, X.; He, J. CoGa particles stabilized by the combination of alloyed Ga0 and lattice GaIII Species. Ind. Eng. Chem. Res. 2020, 59, 8649–8660.

    CAS  Google Scholar 

  50. Zhang, Q.; Wang, T. J.; Li, B.; Jiang, T.; Ma, L. L.; Zhang, X. H.; Liu, Q. Y. Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalysts. Appl. Energy 2012, 97, 509–513.

    CAS  Google Scholar 

  51. Li, M. S.; Van Veen, A. C. Coupled reforming of methane to syngas (2H2-CO) over Mg-Al oxide supported Ni catalyst. Appl. Catal. A: Gen. 2018, 550, 176–183.

    CAS  Google Scholar 

  52. Sharma, U.; Tyagi, B.; Jasra, R. V. Synthesis and characterization of Mg-Al-CO3 layered double hydroxide for CO2 adsorption. Ind. Eng. Chem. Res. 2008, 47, 9588–9595.

    CAS  Google Scholar 

  53. Onuma, T.; Fujioka, S.; Yamaguchi, T.; Itoh, Y.; Higashiwaki, M.; Sasaki, K.; Masui, T.; Honda, T. Polarized Raman spectra in β-Ga2O3 single crystals. J. Cryst. Growth 2014, 401, 330–333.

    CAS  Google Scholar 

  54. Farhadi, S.; Pourzare, K. Simple and low-temperature preparation of Co3O4 sphere-like nanoparticles via solid-state thermolysis of the [Co(NH3)6](NO3)3 complex. Mater. Res. Bull. 2012, 47, 1550–1556.

    CAS  Google Scholar 

  55. Yee, A.; Morrison, S. J.; Idriss, H. A study of the reactions of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. J. Catal. 1999, 186, 279–295.

    CAS  Google Scholar 

  56. Ochoa, J. V.; Trevisanut, C.; Millet, J. M. M.; Busca, G.; Cavani, F. In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides. J. Phys. Chem. C 2013, 117, 23908–23918.

    CAS  Google Scholar 

  57. Jiang, Q.; Lu, H. M. Size dependent interface energy and its applications. Surf. Sci. Rep. 2008, 63, 427–464.

    CAS  Google Scholar 

  58. Zhao, B. R.; Liu, P.; Li, S.; Shi, H. F.; Jia, X. Z.; Wang, Q. Q.; Yang, F.; Song, Z. W.; Guo, C.; Hu, J. et al. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: Effect of homogeneity of Ni-Co alloy. Appl. Catal. B: Environ. 2020, 278, 119307.

    CAS  Google Scholar 

  59. Cossu, G.; Ingo, G. M.; Mattogno, G.; Padeletti, G.; Proietti, G. M. XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs (100) surfaces. Appl. Surf. Sci. 1992, 56–58, 81–88.

    Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 22108009) and the National Key R&D Program of China (No. 2017YFA0206804) are gratefully acknowledged. We also thank Prof. J. L. and Dr. W. X. in Tianjin University of Technology for their help in the in situ HRTEM measurements and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanru Zhu or Jing He.

Electronic Supplementary Material

12274_2022_5249_MOESM1_ESM.pdf

Efficient selective activation of sorbitol C–O bonds over C–C bonds on CoGa (221) generated by lattice-induction strategy

Supplementary material, approximately 23.1 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Zhu, Y., An, Z. et al. Efficient selective activation of sorbitol C–O bonds over C–C bonds on CoGa (221) generated by lattice-induction strategy. Nano Res. 16, 6200–6211 (2023). https://doi.org/10.1007/s12274-022-5249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5249-7

Keywords

Navigation