Skip to main content
Log in

Preparation of 5-hydroxymethylfurfural from cellulose catalyzed by chemical bond anchoring catalyst HfxZr1−xP/SiO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of HfxZr1−xP/SiO2 catalysts were prepared for the catalytic conversion of cellulose to HMF in a two-phase solution system. Metal phosphate supported on mesoporous SiO2 microspheres had improved stability owing to the metal phosphate-O–Si chemical bonds, and used less active metals than conventional catalysts. The effect of the reaction conditions on the preparation of HMF was studied. Hf0.7Zr0.3P/SiO2 reacted at 463 K for 4 h, the cellulose conversion rate reached 86.2%, and the HMF yield was 62.03%. The structures and physicochemical properties of the catalysts were characterized using various techniques. The catalysts haves both Lewis acid and Brønsted acid active sites, which can facilitate the hydrolysis of cellulose, the isomerization of glucose and the dehydration of fructose to obtain HMF. A suitable Brønsted acid to Lewis acid ratio was obtained by adjusting the Hf/Zr/Si content ratio to produce Hf0.7Zr0.3P/SiO2. This helped improve the HMF yield. The catalyst retained more than 90% of its performance after five test cycles.

Graphic abstract

A ratio of hafnium phosphate and zirconium phosphate is loaded onto the surface of the SiO2 microspheres. Due to the appropriate ratio of Brønsted acid to Lewis acid, and the anchoring of the metal phosphate to the carrier by chemical bonding. These catalysts are highly efficient and stable in catalyzing the conversion of cellulose to 5-(hydroxymethyl)furfural in a NaCl-H2O/tetrahydrofuran biphasic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mittal A, Pilath HM, Johnson DK (2020) Direct conversion of biomass carbohydrates to platform chemicals: 5-hydroxymethylfurfural (HMF) and furfural. Energy Fuels 34(3):3284–3293

    Article  CAS  Google Scholar 

  2. Werpy TA, Holladay JE, White JF (2004) Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. Pacific Northwest National Lab, United States

    Book  Google Scholar 

  3. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the us department of energy’s “top 10” revisited. Green Chem 12(4):539–554

    Article  CAS  Google Scholar 

  4. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Article  CAS  PubMed  Google Scholar 

  5. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793

    Article  CAS  Google Scholar 

  6. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559

    Article  CAS  Google Scholar 

  7. Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuelsvia aqueous-phase processing. Chem Soc Rev 40(11):5266–5281

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Z, Sadakane M, Hiyoshi N, Yoshida A, Hara M, Ueda W (2016) Acidic ultrafine tungsten oxide molecular wires for cellulosic biomass conversion. Angew Chem Int Ed 55(35):10234–10238

    Article  CAS  Google Scholar 

  9. Hou Q, Zhen M, Liu L, Chen Y, Huang F, Zhang S, Li W, Ju M (2018) Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid. Appl Catal B 224:183–193

    Article  CAS  Google Scholar 

  10. Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937

    Article  CAS  PubMed  Google Scholar 

  11. Tang J, Zhu L, Fu X, Dai J, Guo X, Hu C (2017) Insights into the kinetics and reaction network of aluminum chloride-catalyzed conversion of glucose in NaCl–H2O/THF biphasic system. ACS Catal 7(1):256–266

    Article  CAS  Google Scholar 

  12. Jiménez-Morales I, Teckchandani-Ortiz A, Santamaría-González J, Maireles-Torres P, Jiménez-López A (2014) Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Appl Catal B 144:22–28

    Article  Google Scholar 

  13. Osatiashtiani A, Lee AF, Granollers M, Brown DR, Olivi L, Morales G, Melero JA, Wilson K (2015) Hydrothermally stable, conformal, sulfated zirconia monolayer catalysts for glucose conversion to 5-HMF. ACS Catal 5(7):4345–4352

    Article  CAS  Google Scholar 

  14. Atanda L, Konarova M, Ma Q, Mukundan S, Shrotri A, Beltramini J (2016) High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catal Sci Technol 6(16):6257–6266

    Article  CAS  Google Scholar 

  15. Cao Z, Fan Z, Chen Y, Li M, Shen T, Zhu C, Ying H (2019) Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates. Appl Catal B 244:170–177

    Article  CAS  Google Scholar 

  16. Li J, Ma Y, Wang L, Song Z, Li H, Wang T, Li H, Eli W (2016) Catalytic conversion of glucose into 5-hydroxymethylfurfural by Hf(otf)4 Lewis acid in water. Catalysts 6(1):1

    Article  Google Scholar 

  17. Yang J, De Oliveira VK, Gu Y, Jérôme F (2015) Catalytic dehydration of carbohydrates suspended in organic solvents promoted by AlCl3/SiO2 coated with choline chloride. Chemsuschem 8(2):269–274

    Article  CAS  PubMed  Google Scholar 

  18. Huang F, Su Y, Long Z, Chen G, Yao Y (2018) Enhanced formation of 5-hydroxymethylfurfural from glucose using a silica-supported phosphate and iron phosphate heterogeneous catalyst. Ind Eng Chem Res 57(31):10198–10205

    Article  CAS  Google Scholar 

  19. Tian C, Zhu X, Chai S-H, Wu Z, Binder A, Brown S, Li L, Luo H, Guo Y, Dai S (2014) Three-phase catalytic system of H2O, ionic liquid, and VOPO4–SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural. Chemsuschem 7(6):1703–1709

    Article  CAS  PubMed  Google Scholar 

  20. Huang Y-B, Luo Y-J, Rio Flores AD, Li L-C, Wang F (2020) N-aryl pyrrole synthesis from biomass-derived furans and arylamine over Lewis acidic Hf-doped mesoporous SBA-15 catalyst. ACS Sustain Chem Eng 8(32):12161–12167

    Article  CAS  Google Scholar 

  21. Hu Z, Peng Y, Gao Y, Qian Y, Ying S, Yuan D, Horike S, Ogiwara N, Babarao R, Wang Y, Yan N, Zhao D (2016) Direct synthesis of hierarchically porous metal–organic frameworks with high stability and strong Brønsted acidity: the decisive role of hafnium in efficient and selective fructose dehydration. Chem Mater 28(8):2659–2667

    Article  CAS  Google Scholar 

  22. Dutta A, Gupta D, Patra AK, Saha B, Bhaumik A (2014) Synthesis of 5-hydroxymethylfurural from carbohydrates using large-pore mesoporous tin phosphate. Chemsuschem 7(3):925–933

    Article  CAS  PubMed  Google Scholar 

  23. Francisco MSP, Cardoso WS, Gushikem Y, Landers R, Kholin YV (2004) Surface modification with phosphoric acid of SiO2/Nb2O5 prepared by the sol−gel method: structural−textural and acid sites studies and an ion exchange model. Langmuir 20(20):8707–8714

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Zuo C, Chen A (2018) Core/shell structured sSiO2/mSiO2 composite particles: the effect of the core size on oxide chemical mechanical polishing. Adv Powder Technol 29(1):18–26

    Article  CAS  Google Scholar 

  25. Knápek A, Sobola D, Burda D, Daňhel A, Mousa M, Kolařík V (2019) Polymer graphite pencil lead as a cheap alternative for classic conductive spm probes. Nanomaterials 9(12):1756

    Article  PubMed Central  Google Scholar 

  26. Huang Y-B, Luo Y-J, Wang F (2019) Hafnium-doped mesoporous silica as efficient Lewis acidic catalyst for friedel–crafts alkylation reactions. Nanomaterials 9(8):1128

    Article  PubMed Central  Google Scholar 

  27. Wang H, Wu P, Li XF, Chen S, Zhang SP, Song BB (2011) Study of reactions between HfO2 and si in thin films with precise identification of chemical states by xps. Appl Surf Sci 257(8):3440–3445

    Article  CAS  Google Scholar 

  28. Armelao L, Eisenmenger-Sittner C, Groenewolt M, Gross S, Sada C, Schubert U, Tondello E, Zattin A (2005) Zirconium and hafnium oxoclusters as molecular building blocks for highly dispersed ZrO2 or HfO2 nanoparticles in silica thin films. J Mater Chem 15(18):1838–1848

    Article  CAS  Google Scholar 

  29. Ryu J-H, Kim S (2020) Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing. Chaos Solitons Fractals 140:110236–110243

    Article  Google Scholar 

  30. Massiot P, Centeno MA, Carrizosa I, Odriozola JA (2001) Thermal evolution of sol–gel-obtained phosphosilicate solids (SiPO). J Non-Cryst Solids 292(1):158–166

    Article  CAS  Google Scholar 

  31. Gao X, Yan R, Xu L, Ma H (2018) Effect of amorphous phytic acid nanoparticles on the corrosion mitigation performance and stability of sol-gel coatings on cold-rolled steel substrates. J Alloys Compd 747:747–754

    Article  CAS  Google Scholar 

  32. Das SK, Bhunia MK, Sinha AK, Bhaumik A (2011) Synthesis, characterization, and biofuel application of mesoporous zirconium oxophosphates. ACS Catal 1(5):493–501

    Article  CAS  Google Scholar 

  33. Mazzotta MG, Gupta D, Saha B, Patra AK, Bhaumik A, Abu-Omar MM (2014) Efficient solid acid catalyst containing Lewis and Brønsted acid sites for the production of furfurals. Chemsuschem 7(8):2342–2350

    Article  CAS  PubMed  Google Scholar 

  34. Swift TD, Nguyen H, Erdman Z, Kruger JS, Nikolakis V, Vlachos DG (2016) Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. J Catal 333:149–161

    Article  CAS  Google Scholar 

  35. Bing J, Hu C, Nie Y, Yang M, Qu J (2015) Mechanism of catalytic ozonation in Fe2O3/Al2O3@SBA-15 aqueous suspension for destruction of ibuprofen. Environ Sci Technol 49(3):1690–1697

    Article  CAS  PubMed  Google Scholar 

  36. Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner WC, Dumesic JA, Huber GW (2013) Conversion of glucose into levulinic acid with solid metal(iv) phosphate catalysts. J Catal 304:123–134

    Article  CAS  Google Scholar 

  37. Sun H, Wang Q, Zhang X, Yu Q, Li L, Wang Y, Shen B (2018) Hydrodesulfurization of dibenzothiophene over NiW/(SnAlPO4–5+Al2O3) catalyst, the tuning effect of SnAlPO4–5 to the desulfurization reaction pathway. Appl Catal A 563:137–145

    Article  CAS  Google Scholar 

  38. Gao D, Duan A, Zhang X, Zhao Z, Hong E, Qin Y, Xu C (2015) Synthesis of CoMo catalysts supported on EMT/FAU intergrowth zeolites with different morphologies and their hydro-upgrading performances for FCC gasoline. Chem Eng J 270:176–186

    Article  CAS  Google Scholar 

  39. Ordomsky VV, Sushkevich VL, Schouten JC, van der Schaaf J, Nijhuis TA (2013) Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts. J Catal 300:37–46

    Article  CAS  Google Scholar 

  40. Li X, Xia Q, Nguyen VC, Peng K, Liu X, Essayem N, Wang Y (2016) High yield production of HMF from carbohydrates over silica–alumina composite catalysts. Catal Sci Technol 6(20):7586–7596

    Article  CAS  Google Scholar 

  41. Zhang X, Zhang D, Sun Z, Xue L, Wang X, Jiang Z (2016) Highly efficient preparation of HMF from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction. Appl Catal B 196:50–56

    Article  CAS  Google Scholar 

  42. Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B (2009) Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem 11(12):1948

    Article  CAS  Google Scholar 

  43. Mostofian B, Cai CM, Smith MD, Petridis L, Cheng X, Wyman CE, Smith JC (2016) Local phase separation of co-solvents enhances pretreatment of biomass for bioenergy applications. J Am Chem Soc 138(34):10869–10878

    Article  CAS  PubMed  Google Scholar 

  44. Shi N, Liu Q, Zhang Q, Wang T, Ma L (2013) High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system. Green Chem 15(7):1967–1974

    Article  CAS  Google Scholar 

  45. Román-Leshkov Y, Dumesic JA (2009) Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Top Catal 52(3):297–303

    Article  Google Scholar 

  46. Amarasekara AS, Williams LD, Ebede CC (2008) Mechanism of the dehydration of d-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150°C: an NMR study. Carbohydr Res 343(18):3021–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caes BR, Teixeira RE, Knapp KG, Raines RT (2015) Biomass to furanics: Renewable routes to chemicals and fuels. ACS Sustain Chem Eng 3(11):2591–2605

    Article  CAS  Google Scholar 

  48. Li W, Li M, Liu H, Jia W, Yu X, Wang S, Zeng X, Sun Y, Wei J, Tang X, Lin L (2021) Domino transformation of furfural to γ-valerolactone over SAPO-34 zeolite supported zirconium phosphate catalysts with tunable Lewis and Brønsted acid sites. Mol Catal 506:111538

    Article  CAS  Google Scholar 

  49. Román-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49(47):8954–8957

    Article  Google Scholar 

  50. Pidko EA, Degirmenci V, van Santen RA, Hensen EJM (2010) Glucose activation by transient Cr2+ dimers. Angew Chem Int Ed 49(14):2530–2534

    Article  CAS  Google Scholar 

  51. Li X, Peng K, Liu X, Xia Q, Wang Y (2017) Comprehensive understanding of the role of Brønsted and Lewis acid sites in glucose conversion into 5-hydromethylfurfural. ChemCatChem 9(14):2739–2746

    Article  CAS  Google Scholar 

  52. Zhang Y, Wang J, Li X, Liu X, Xia Y, Hu B, Lu G, Wang Y (2015) Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts. Fuel 139:301–307

    Article  CAS  Google Scholar 

  53. He J, Liu M, Huang K, Walker TW, Maravelias CT, Dumesic JA, Huber GW (2017) Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chem 19(15):3642–3653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of Jiangsu Key Laboratory for Biomass Energy and Material (JSBEM202001), National Natural Science Foundation of China (No. 22078057, No. 21576050 and No. 51602052), Fundamental Research Funds for the Central Universities of China (No. 3207045403, 3207045409, 3207046414), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Zhongying Young Scholars of Southeast University, Applied Basic Research Program of Suzhou (SYG202026), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX20_0014, SJCX20_0015), and Innovation Platform Project Supported by Jiangsu Province of China (6907041203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Zhou.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Xu, M., Wang, N. et al. Preparation of 5-hydroxymethylfurfural from cellulose catalyzed by chemical bond anchoring catalyst HfxZr1−xP/SiO2. Reac Kinet Mech Cat 133, 157–171 (2021). https://doi.org/10.1007/s11144-021-01989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01989-8

Keywords

Navigation