Skip to main content
Log in

Ni3B modified BiVO4 photoanodes for enhanced photoelectrochemical water splitting: The key role of Ni3B on reducing the water oxidation barrier

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bismuth vanadate (BiVO4, BVO) as a promising photoelectrode has been received great attention for photoelectrochemical (PEC) water splitting. However, the slow oxidation kinetics on the surface of BiVO4 limited the PEC water splitting efficiency. Herein, nickel boride (Ni3B, NB) nanoparticles, generally used in electrocatalytic field material, were modified on the surface of BiVO4 photoelectrode as an efficient cocatalyst to accelerate the oxygen evolution reaction. The as-prepared BVO-NB-5P photoelectrode exhibits a remarkable photocurrent density of 1.47 mA·cm−2 at 1.23 V versus the reversible hydrogen electrode (RHE) under air mass (AM) 1.5 G illumination, which is about 2.8 times higher than the bare BiVO4 photoelectrode, and its water splitting rate is 11.3 times higher than bare BiVO4. The PEC studies reveal that the spin coated Ni3B crystal cocatalyst could effectively reduce the water oxidation barrier, and improve the surface charge injection efficiency to 94%, which could boost the photogenerated holes reaction to enhance the PEC performance of BiVO4 photoelectrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, L. Q.; Zhang, Y. P.; He, J. D.; Zhu, H. F.; Zhou, X. Y.; Li, M.; Yang, Q. L.; Xu, F. Enhanced photoelectrochemical properties of α-Fe2O3 nanoarrays for water splitting. J. Alloys Compd. 2018, 753, 601–606.

    Article  CAS  Google Scholar 

  2. Ye, S.; Ding, C. M.; Liu, M. Y.; Wang, A. Q.; Huang, Q. G.; Li, C. Water oxidation catalysts for artificial photosynthesis. Adv. Mater. 2019, 31, 1902069.

    Article  CAS  Google Scholar 

  3. Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

    Article  CAS  Google Scholar 

  4. Zhang, Y. P.; He, J. D.; Yang, Q. L.; Zhu, H. F.; Wang, Q. Q.; Xue, Q. Z.; Yu, L. Q. Solution quenched in-situ growth of hierarchical flower-like NiFe2O4/Fe2O3 heterojunction for wide-range light absorption. J. Power Sources 2019, 440, 227120.

    Article  CAS  Google Scholar 

  5. Duan, L. J.; Zhu, H. F.; He, J. D.; Yang, Q. L.; Zhao, X. Y.; Zhang, Y. P.; Yu, L. Q. Oriented titania nanotube biphase junction arrays on water splitting. Mater. Sci. Semicond. Process. 2021, 126, 105667.

    Article  CAS  Google Scholar 

  6. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  7. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

    Article  CAS  Google Scholar 

  8. Li, K. X.; Feng, D. M.; Tong, Y. Hierarchical metal sulfides heterostructure as superior bifunctional electrode for overall water splitting. ChemSusChem 2022, 15, e202200590.

  9. Lu, Y.; Yang, Y. L.; Fan, X. Y.; Li, Y. Q.; Zhou, D. H.; Cai, B.; Wang, L. Y.; Fan, K.; Zhang, K. Boosting charge transport in BiVO4 photoanode for solar water oxidation. Adv. Mater. 2022, 34, 2108178.

    Article  CAS  Google Scholar 

  10. Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A: Gen. 2018, 555, 47–74.

    Article  CAS  Google Scholar 

  11. Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

    Article  CAS  Google Scholar 

  12. Tan, H. L.; Amal, R.; Ng, Y. H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review. J. Mater. Chem. A 2017, 5, 16498–16521.

    Article  CAS  Google Scholar 

  13. Zhou, Z. M.; Chen, J. J.; Wang, Q. L.; Jiang, X. X.; Shen, Y. Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode. Chin. J. Catal. 2022, 43, 433–441.

    Article  CAS  Google Scholar 

  14. Wang, S. C.; Liu, B. Y.; Wang, X.; Zhang, Y. J.; Huang, W. Nanoporous MoO3−x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting. Nano Res. 2022, 15, 7026–7033.

    Article  CAS  Google Scholar 

  15. Wang, L.; Su, J. Z.; Guo, L. J. Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting. Nano Res. 2019, 12, 575–580.

    Article  CAS  Google Scholar 

  16. Hu, K. K.; E, L.; Li, Y. J.; Zhao, X. Y.; Zhao, D.; Zhao, W.; Rong, H. Photocatalytic degradation mechanism of the visible-light responsive BiVO4/TiO2 core—shell heterojunction photocatalyst. J. Inorg. Organomet. Polym. Mater. 2020, 30, 775–788.

    Article  CAS  Google Scholar 

  17. Yin, X.; Liu, Q.; Yang, Y. H.; Liu, Y.; Wang, K. K.; Li, Y. M.; Li, D. W.; Qiu, X. Q.; Li, W. Z.; Li, J. An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting. Int. J. Hydrogen Energy 2019, 44, 594–604.

    Article  CAS  Google Scholar 

  18. Coelho, D.; Gaudêncio, J. P. R. S.; Carminati, S. A.; Ribeiro, F. W. P.; Nogueira, A. F.; Mascaro, L. H. Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting. Chem. Eng. J. 2020, 399, 125836.

    Article  CAS  Google Scholar 

  19. Reddy, C. V.; Reddy, I. N.; Koutavarapu, R.; Reddy, K. R.; Kim, D.; Shim, J. Novel BiVO4 nanostructures for environmental remediation, enhanced photoelectrocatalytic water oxidation and electrochemical energy storage performance. Sol. Energy 2020, 207, 441–449.

    Article  Google Scholar 

  20. Kang, Z. H.; Lv, X. D.; Sun, Z.; Wang, S. Q.; Zheng, Y. Z.; Tao, X. Borate and iron hydroxide co-modified BiVO4 photoanodes for high-performance photoelectrochemical water oxidation. Chem. Eng. J. 2021, 421, 129819.

    Article  CAS  Google Scholar 

  21. González, D.; Sodupe, M.; Rodríguez-Santiago, L.; Solans-Monfort, X. Metal coordination determines the catalytic activity of IrO2 nanoparticles for the oxygen evolution reaction. J. Catal. 2022, 412, 78–86.

    Article  Google Scholar 

  22. Chen, H.; Zou, X. X. Intermetallic borides: Structures, synthesis and applications in electrocatalysis. Inorg. Chem. Front. 2020, 7, 2248–2264.

    Article  CAS  Google Scholar 

  23. Gupta, S.; Patel, M. K.; Miotello, A.; Patel, N. Metal boride-based catalysts for electrochemical water-splitting: A review. Adv. Funct. Mater. 2020, 30, 1906481.

    Article  CAS  Google Scholar 

  24. Arivu, M.; Masud, J.; Umapathi, S.; Nath, M. Facile synthesis of Ni3B/rGO nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction in alkaline media. Electrochem. Commun. 2018, 86, 121–125.

    Article  CAS  Google Scholar 

  25. Wu, Y. Y.; Yin, J. Q.; Jiang, W.; Li, H. J.; Liu, C. B.; Che, G. B. Constructing urchin-like Ni3S2@Ni3B on Ni plate as a highly efficient bifunctional electrocatalyst for water splitting reaction. Nanoscale 2021, 13, 17953–17960.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this study by the Natural Science Foundation of Shandong Province (No. ZR2019EMQ001), Technology Project of Qingdao (No. 22-3-7-cspz-9-nsh), and the National Natural Science Foundation of China (No. 21476262) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianqing Yu.

Electronic Supplementary Material

12274_2022_5079_MOESM1_ESM.pdf

Ni3B modified BiVO4 photoanodes for enhanced photoelectrochemical water splitting: The key role of Ni3B on reducing the water oxidation barrier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., Zhu, H., Zhao, X. et al. Ni3B modified BiVO4 photoanodes for enhanced photoelectrochemical water splitting: The key role of Ni3B on reducing the water oxidation barrier. Nano Res. 16, 12043–12049 (2023). https://doi.org/10.1007/s12274-022-5079-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5079-7

Keywords

Navigation