Skip to main content
Log in

Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxygen evolving catalyst (OEC) is a critical determinant for the efficiency of photoelectrochemical (PEC) water splitting. Here we report an approach to depositing a novel manganese borate (Mn-Bi) OER catalyst on BiVO4 nanocone photoanode by photodeposition in sodium borate buffer solution containing Mn(II) ions. Due to the spontaneous photo-electric-field-enhancement effect at the vertically oriented BiVO4 nanocone structure, spherical Mn-Bi nanoparticle was selectively photodeposited at the apex of BiVO4 nanocone. Significant improvement of photocurrent was observed for the obtained hierarchical Mn-Bi/BiVO4 photoanode which could be ascribed to enhanced hole injection efficiency, especially in low bias region. It was observed that the injection efficiency of Mn-Bi/BiVO4 is 98% which gave a photocurrent of 0.94 mA/cm2 at 1.5 V vs. RHE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  2. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.

    Article  Google Scholar 

  3. Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.

    Article  Google Scholar 

  4. Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

    Article  Google Scholar 

  5. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  6. Song, X. Y.; Li, W. Q.; He, D.; Wu, H. Y.; Ke, Z. J.; Jiang, C. Z.; Wang, G. M.; Xiao, X. H. The “midas touch” transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/ nitrogen coimplantation. Adv. Energy Mater. 2018, 8, 1800165.

    Article  Google Scholar 

  7. He, D.; Song, X. Y.; Ke, Z. J.; Xiao, X. H.; Jiang, C. Z. Construct Fe2+ species and Au particles for significantly enhanced photoelectrochemical performance of α-Fe2O3 by ion implantation. Sci. China Mater. 2018, 61, 878–886.

    Article  Google Scholar 

  8. Woodhouse, M.; Parkinson, B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 2009, 38, 197–210.

    Article  Google Scholar 

  9. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

    Article  Google Scholar 

  10. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  Google Scholar 

  11. Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.

    Article  Google Scholar 

  12. Zhong, M.; Hisatomi, T.; Kuang, Y. B.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q. X.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M. et al. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 2015, 137, 5053–5060.

    Article  Google Scholar 

  13. Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467.

    Article  Google Scholar 

  14. Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628.

    Article  Google Scholar 

  15. Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

    Article  Google Scholar 

  16. Seabold, J. A.; Choi, K. S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186–2192.

    Article  Google Scholar 

  17. Wan, X. K.; Niu, F. J.; Su, J. Z.; Guo, L. J. Enhanced photoelectrochemical water oxidation of bismuth vanadate via a combined strategy of W doping and surface RGO modification. Phys. Chem. Chem. Phys. 2016, 18, 31803–31810.

    Article  Google Scholar 

  18. Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J. S.; Bard, A. J.; Mullins, C. B. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 2013, 135, 11389–11396.

    Article  Google Scholar 

  19. Nair, V.; Perkins, C. L.; Lin, Q. Y.; Law, M. Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy Environ. Sci. 2016, 9, 1412–1429.

    Article  Google Scholar 

  20. Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 2011, 4, 5028–5034.

    Article  Google Scholar 

  21. Kim, C. W.; Son, Y. S.; Kang, M. J.; Kim, D. Y.; Kang, Y. S. (040)-crystal facet engineering of BiVO4 plate photoanodes for solar fuel production.. Adv. Energy Mater. 2016, 6, 1501754.

    Article  Google Scholar 

  22. Zhou, M.; Zhang, S. D.; Sun, Y. F.; Wu, C. Z.; Wang, M. T.; Xie, Y. C-oriented and {010} facets exposed BiVO4 nanowall films: Template-free fabrication and their enhanced photoelectrochemical properties. Chem. Asian J. 2010, 5, 2515–2523.

    Article  Google Scholar 

  23. Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

    Article  Google Scholar 

  24. Chhetri, M.; Dey, S.; Rao, C. N. R. Photoelectrochemical oxygen evolution reaction activity of amorphous Co–La double hydroxide-BiVO4 fabricated by pulse plating electrodeposition. ACS Energy Lett. 2017, 2, 1062–1069.

    Article  Google Scholar 

  25. Wan, X. K.; Wang, L.; Dong, C. L.; Menendez Rodriguez, G.; Huang, Y. C.; Macchioni, A.; Shen, S. H. Activating kläui-type organometallic precursors at metal oxide surfaces for enhanced solar water oxidation. ACS Energy Lett. 2018, 3, 1613–1619.

    Article  Google Scholar 

  26. Jia, A. H.; Kan, M.; Jia, J. P.; Zhao, Y. X. Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photoelectrochemical water splitting. J. Semicond. 2017, 38, 053004.

    Article  Google Scholar 

  27. Kan, M.; Xue, D. Q.; Jia, A. H.; Qian, X. F.; Yue, D. T.; Jia, J. P.; Zhao, Y. X. A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer co-catalyzed by molecular catalyst. Appl. Catal. B Environ. 2018, 225, 504–511.

    Article  Google Scholar 

  28. Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

    Article  Google Scholar 

  29. Surendranath, Y.; Dinca, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615–2620.

    Article  Google Scholar 

  30. Ullman, A. M.; Nocera, D. G. Mechanism of cobalt self-exchange electron transfer. J. Am. Chem. Soc. 2013, 135, 15053–15061.

    Article  Google Scholar 

  31. Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel–borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.

    Article  Google Scholar 

  32. Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662–3674.

    Article  Google Scholar 

  33. Barber, J. Crystal structure of the oxygen-evolving complex of photosystem II. Inorg. Chem. 2008, 47, 1700–1710.

    Article  Google Scholar 

  34. Lubitz, W.; Reijerse, E. J.; Messinger, J. Solar water-splitting into H2 and O2: Design principles of photosystem II and hydrogenases. Energy Environ. Sci. 2008, 1, 15–31.

    Article  Google Scholar 

  35. Su, J. Z.; Guo, L. J.; Yoriya, S.; Grimes, C. A. Aqueous growth of pyramidalshaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting. Cryst. Growth Des. 2010, 10, 856–861.

    Article  Google Scholar 

  36. Qiu, Y. C.; Liu, W.; Chen, W.; Chen, W.; Zhou, G. M.; Hsu, P. C.; Zhang, R. F.; Liang, Z.; Fan, S. S.; Zhang, Y. G. et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2016, 2, e1501764.

    Article  Google Scholar 

  37. Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781–3786.

    Article  Google Scholar 

  38. Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

    Article  Google Scholar 

  39. Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.

    Article  Google Scholar 

  40. Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by cu ion implantation. Nano Res. 2014, 7, 353–364.

    Article  Google Scholar 

  41. Wei, Y. K.; Su, J. Z.; Wan, X. K.; Guo, L. J.; Vayssieres, L. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Res. 2016, 9, 1561–1569.

    Article  Google Scholar 

  42. Walsh, A.; Yan, Y. F.; Huda, M. N.; Al-Jassim, M. M.; Wei, S. H. Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals. Chem. Mater. 2009, 21, 547–551.

    Article  Google Scholar 

  43. McDonald, K. J.; Choi, K. S. A new electrochemical synthesis route for a bioi electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553–8557.

    Article  Google Scholar 

  44. Ambrosio, F.; Wiktor, J.; Pasquarello, A. pH-dependent catalytic reaction pathway for water splitting at the BiVO4-water interface from the band alignment. ACS Energy Lett. 2018, 3, 829–834.

    Article  Google Scholar 

  45. Steinmiller, E. M. P.; Choi, K. S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA 2009, 106, 20633–20636.

    Article  Google Scholar 

  46. Nie, K. Q.; Kashtanov, S.; Wei, Y. K.; Liu, Y. S.; Zhang, H.; Kapilashrami, M.; Ye, Y. F.; Glans, P. A.; Zhong, J.; Vayssieres, L. et al. Atomic-scale understanding of the electronic structure-crystal facets synergy of nanopyramidal CoPi/BiVO4 hybrid photocatalyst for efficient solar water oxidation. Nano Energy 2018, 53, 483–491.

    Article  Google Scholar 

  47. Choi, S. K.; Choi, W.; Park, H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys. Chem. Chem. Phys. 2013, 15, 6499–6507.

    Article  Google Scholar 

  48. Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: An earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small 2017, 13, 1700394.

    Article  Google Scholar 

  49. Zhou, M.; Bao, J.; Bi, W. T.; Zeng, Y. Q.; Zhu, R.; Tao, M. S.; Xie, Y. Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co-Pi catalysts. ChemSusChem 2012, 5, 1420–1425.

    Article  Google Scholar 

  50. Zhou, X. H.; Liu, R.; Sun, K.; Papadantonakis, K. M.; Brunschwig, B. S.; Lewis, N. S. 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition. Energy Environ. Sci. 2016, 9, 892–897.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the financial supports from the Fundamental Research Funds for the Central Universities (No. xjj2016039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinzhan Su or Liejin Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Su, J. & Guo, L. Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting. Nano Res. 12, 575–580 (2019). https://doi.org/10.1007/s12274-018-2256-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2256-9

Keywords

Navigation