Skip to main content

Advertisement

SpringerLink
  • Nano Research
  • Journal Aims and Scope
  • Submit to this journal
Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution

03 October 2022

Jingyi Han & Jingqi Guan

Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies

10 September 2020

Jiajun Wang, Zhao Zhang, … Wenbin Hu

Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts

01 June 2021

Amr Radwan, Huihui Jin, … Shichun Mu

Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion

11 March 2019

Tingting Sun, Lianbin Xu, … Yadong Li

Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis

11 October 2019

Diab Khalafallah, Mingjia Zhi & Zhanglian Hong

Rational design and synthesis of advanced metal-organic frameworks for electrocatalytic water splitting

28 February 2023

Yu-Jia Tang & Ya-Qian Lan

Research progress of Fe-N-C catalysts for the electrocatalytic oxygen reduction reaction

10 May 2022

Ying Wang, Lei Wang & Honggang Fu

Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion

28 April 2021

Yu-Chen Qin, Feng-Qi Wang, … Ayyaz Ahmad

A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction

01 April 2020

Wei Hua, Huan-Huan Sun, … Jian-Gan Wang

Download PDF
  • Review Article
  • Open Access
  • Published: 22 October 2022

Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion

  • Saswati Santra1 na1,
  • Verena Streibel1 na1 &
  • Ian D. Sharp1 

Nano Research volume 15, pages 10234–10267 (2022)Cite this article

  • 457 Accesses

  • 1 Citations

  • 2 Altmetric

  • Metrics details

Abstract

The transition from a global economy dependent on fossil fuels to one based on sustainable energy conversion technologies presents the primary challenge of the day. Equipping water electrolyzers and metal-air batteries with earth-abundant bifunctional transition metal (TM) catalysts that efficiently catalyse the hydrogen and oxygen evolution reactions (HER and OER) and the oxygen reduction and evolution reactions (ORR and OER), respectively, reduces the cost and system complexity, while also providing prospects for accelerated scaling and sustainable material reuse. Among the TMs, earth-abundant molybdenum (Mo)-based multifunctional catalysts are especially promising and have attracted considerable attention in recent years. Starting with a brief introduction to HER, OER, and ORR mechanisms and parameters governing their bifunctionality, this comprehensive review focuses on such Mo-based multifunctional catalysts. We review and discuss recent progress achieved through the formation of Mo-based compounds, heterostructures, and nanoscale composites, as well as by doping, defect engineering, and nanoscale sculpting of Mo-based catalysts. The systems discussed in detail are based on Mo chalcogenides, carbides, oxides, nitrides, and phosphides, as well as Mo alloys, highlighting specific opportunities afforded by synergistic interactions of Mo with both non-metals and non-noble metals. Finally, we discuss the future of Mo-based multifunctional electrocatalysts for HER/OER, ORR/OER, and HER/ORR/OER, analysing emerging trends, new opportunities, and underexplored avenues in this promising materials space.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Zhang, Y. L.; Goh, K.; Zhao, L.; Sui, X. L.; Gong, X. F.; Cai, J. J.; Zhou, Q. Y.; Zhang, H. D.; Li, L.; Kong, F. R. et al. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. Nanoscale 2020, 12, 21534–21559.

    Article  CAS  Google Scholar 

  2. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

    Article  CAS  Google Scholar 

  3. Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417–10430.

    Article  CAS  Google Scholar 

  4. Yu, Y. D.; Zhou, J.; Sun, Z. M. Novel 2D transition-metal carbides: Ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 2020, 30, 2000570.

    Article  CAS  Google Scholar 

  5. Ramakrishnan, S.; Balamurugan, J.; Vinothkannan, M.; Kim, A. R.; Sengodan, S.; Yoo, D. J. Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries. Appl. Catal. B: Environ. 2020, 279, 119381.

    Article  CAS  Google Scholar 

  6. Oh, Y. J.; Kim, J. H.; Lee, J. Y.; Park, S. K.; Kang, Y. C. Design of house centipede-like MoC-Mo2C nanorods grafted with N-doped carbon nanotubes as bifunctional catalysts for high-performance Li-O2 batteries. Chem. Eng. J. 2020, 384, 123344.

    Article  CAS  Google Scholar 

  7. Zhai, Y. Y.; Ren, X. R.; Yan, J. Q.; Liu, S. Z. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000096.

    Article  CAS  Google Scholar 

  8. Wang, Z. P.; Huang, J. H.; Wang, L.; Liu, Y. Y.; Liu, W. H.; Zhao, S. L.; Liu, Z. Q. Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202114696.

    CAS  Google Scholar 

  9. Zhang, L. P.; Xia, Z. H. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 2011, 115, 11170–11176.

    Article  CAS  Google Scholar 

  10. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  CAS  Google Scholar 

  11. Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

    Article  Google Scholar 

  12. Prabhakaran, S.; Balamurugan, J.; Kim, N. H.; Lee, J. H. Hierarchical 3D oxygenated cobalt molybdenum selenide nanosheets as robust trifunctional catalyst for water splitting and zinc-air batteries. Small 2020, 16, 2000797.

    Article  CAS  Google Scholar 

  13. Zhang, W. M.; Zhao, X. Y.; Zhao, Y. W.; Zhang, J. Q.; Li, X. T.; Fang, L. D.; Li, L. Mo-doped Zn, Co zeolitic imidazolate framework-derived Co9S8 quantum dots and MoS2 embedded in three-dimensional nitrogen-doped carbon nanoflake arrays as an efficient trifunctional electrocatalysts for the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 10280–10290.

    Article  CAS  Google Scholar 

  14. Bai, J. M.; Meng, T.; Guo, D. L.; Wang, S. G.; Mao, B. G.; Cao, M. H. Co9S8@MoS2 core—shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn-air batteries. ACS Appl. Mater. Interfaces 2018, 10, 1678–1689.

    Article  CAS  Google Scholar 

  15. Wu, T.; Pang, X.; Zhao, S. W.; Xu, S. M.; Liu, Z. Q.; Li, Y. S.; Huang, F. Q. One-step construction of ordered sulfur-terminated tantalum carbide MXene for efficient overall water splitting. Small Struct. 2022, 3, 2100206.

    Article  CAS  Google Scholar 

  16. Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

    Article  CAS  Google Scholar 

  17. Xiong, B. Y.; Chen, L. S.; Shi, J. L. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 2018, 8, 3688–3707.

    Article  CAS  Google Scholar 

  18. Jia, G.; Zhang, W.; Fan, G. Z.; Li, Z. S.; Fu, D. G.; Hao, W. C.; Yuan, C. W.; Zou, Z. G. Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis. Angew. Chem. 2017, 129, 13969–13973.

    Article  Google Scholar 

  19. Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 143, 1593–1596.

    Article  Google Scholar 

  20. Wu, T.; Sun, M. Z.; Huang, B. L. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022, 41, 2169–2183.

    Article  CAS  Google Scholar 

  21. Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

    Article  Google Scholar 

  22. Li, S. S.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: Current status and perspectives. J. Mater. Chem. A 2019, 7, 18674–18707.

    Article  CAS  Google Scholar 

  23. Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

    Article  CAS  Google Scholar 

  24. Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2011, 28, 9266–9291.

    Article  Google Scholar 

  25. Sun, T.; Tian, B. B.; Lu, J.; Su, C. L. Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Mater. Chem. A 2017, 5, 18933–18950.

    Article  CAS  Google Scholar 

  26. Mishra, P.; Sudarsanam, P.; Mahapatra, D. M.; Elmekawy, A.; Pant, D.; Singh, L. Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst. Catal. Rev., in press, https://doi.org/10.1080/01614940.2021.2003085.

  27. Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

    Article  CAS  Google Scholar 

  28. Tiwari, A. P.; Yoon, Y.; Novak, T. G.; Azam, A.; Lee, M.; Lee, S. S.; Lee, G. H.; Srolovitz, D. J.; An, K. S.; Jeon, S. Lattice strain formation through spin-coupled shells of MoS2 on Mo2C for bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts. Adv. Mater. Interfaces 2019, 6, 1900948.

    Article  CAS  Google Scholar 

  29. Fan, X. P.; Huang, Y. G.; Wang, H. Q.; Zheng, F. H.; Tan, C. L.; Li, Y.; Lu, X. F.; Ma, Z. L.; Li, Q. Y. Efficacious nitrogen introduction into MoS2 as bifunctional electrocatalysts for long-life Li-O2 batteries. Electrochim. Acta 2021, 369, 137653.

    Article  CAS  Google Scholar 

  30. Xia, Q.; Zhao, L. L.; Li, D. Y.; Wang, J.; Liu, L. L.; Hou, C. X.; Liu, X. M.; Xu, H. R.; Dang, F.; Zhang, J. T. Phase modulation of 1T/2H MoSe2 nanoflowers for highly efficient bifunctional electrocatalysis in rechargeable Li-O2 batteries. J. Mater. Chem. A 2021, 9, 19922–19931.

    Article  CAS  Google Scholar 

  31. Hu, Q.; Liu, X. F.; Zhu, B.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 2018, 50, 212–219.

    Article  CAS  Google Scholar 

  32. Zhang, T. T.; Liu, X. W.; Cui, X.; Chen, M. L.; Liu, S. J.; Geng, B. Y. Colloidal synthesis of Mo-Ni alloy nanoparticles as bifunctional electrocatalysts for efficient overall water splitting. Adv. Mater. Interfaces 2018, 5, 1800359.

    Article  Google Scholar 

  33. Gao, M. Y.; Yang, C.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Hua, Y. X.; Xu, C. Y.; Dong, P. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. J. Mater. Chem. A 2017, 5, 5797–5805.

    Article  CAS  Google Scholar 

  34. Sun, Y.; Wang, C. D.; Ding, T.; Zuo, J.; Yang, Q. Fabrication of amorphous CoMoS4 as a bifunctional electrocatalyst for water splitting under strong alkaline conditions. Nanoscale 2016, 8, 18887–18892.

    Article  CAS  Google Scholar 

  35. Fan, H. F.; Huang, J.; Chen, G. L.; Chen, W.; Zhang, R.; Chu, S. J.; Wang, X. Q.; Li, C. R.; Ostrikov, K. K. Hollow Ni-V-Mo chalcogenide nanopetals as bifunctional electrocatalyst for overall water splitting. ACS Sustain Chem. Eng. 2019, 7, 1622–1632.

    Article  CAS  Google Scholar 

  36. Chang, B.; Yang, J.; Shao, Y. L.; Zhang, L.; Fan, W. L.; Huang, B. B.; Wu, Y. Z.; Hao, X. P. Bimetallic NiMoN nanowires with a preferential reactive facet: An ultraefficient bifunctional electrocatalyst for overall water splitting. ChemSusChem 2018, 11, 3198–3207.

    Article  CAS  Google Scholar 

  37. Wang, Y.; Sun, Y.; Yan, F.; Zhu, C. L.; Gao, P.; Zhang, X. T.; Chen, Y. J. Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2018, 6, 8479–8487.

    Article  CAS  Google Scholar 

  38. Wang, B. L.; Shi, F.; Sun, Y. X.; Yan, L. J.; Zhang, X. P.; Wang, B.; Sun, W. Ni-enhanced molybdenum carbide loaded N-doped graphitized carbon as bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2022, 572, 151480.

    Article  CAS  Google Scholar 

  39. Zhang, K. J.; Zhang, L. X.; Chen, X.; He, X.; Wang, X. G.; Dong, S. M.; Han, P. X.; Zhang, C. J.; Wang, S.; Gu, L. et al. Mesoporous cobalt molybdenum nitride: A highly active bifunctional electrocatalyst and its application in lithium-O2 batteries. J. Phys. Chem. C 2013, 117, 858–865.

    Article  CAS  Google Scholar 

  40. Xiong, Q. Z.; Wang, Y.; Liu, P. F.; Zheng, L. R.; Wang, G. Z.; Yang, H. G.; Wong, P. K.; Zhang, H. M.; Zhao, H. J. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 2018, 30, 1801450.

    Article  Google Scholar 

  41. Gudal, C. C.; Pan, U. N.; Paudel, D. R.; Kandel, M. R.; Kim, N. H.; Lee, J. H. Bifunctional P-intercalated and doped metallic (1T)-copper molybdenum sulfide ultrathin 2D-nanosheets with enlarged interlayers for efficient overall water splitting. ACS Appl. Mater. Interfaces 2022, 14, 14492–14503.

    Article  CAS  Google Scholar 

  42. Wang, W. F.; Yang, Z.; Jiao, F. X.; Gong, Y. Q. (P, W)-codoped MoO2 nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2020, 529, 146987.

    Article  CAS  Google Scholar 

  43. Xue, J. Y.; Li, F. L.; Zhao, Z. Y.; Li, C.; Ni, C. Y.; Gu, H. W.; Young, D. J.; Lang, J. P. In situ generation of bifunctional Fe-doped MoS2 nanocanopies for efficient electrocatalytic water splitting. Inorg. Chem. 2019, 58, 11202–11209.

    Article  CAS  Google Scholar 

  44. Wang, Y.; Williams, T.; Gengenbach, T.; Kong, B.; Zhao, D. Y.; Wang, H. T.; Selomulya, C. Unique hybrid Ni2P/MoO2@MoS2 nanomaterials as bifunctional non-noble-metal electro-catalysts for water splitting. Nanoscale 2017, 9, 17349–17356.

    Article  CAS  Google Scholar 

  45. Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2—Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

    Article  CAS  Google Scholar 

  46. Zheng, M. Y.; Guo, K. L.; Jiang, W. J.; Tang, T.; Wang, X. Y.; Zhou, P. P.; Du, J.; Zhao, Y. Q.; Xu, C. L.; Hu, J. S. When MoS2 meets FeOOH: A “one-stone-two-birds” heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Appl. Catal. B:Environ. 2019, 244, 1004–1012.

    Article  CAS  Google Scholar 

  47. Tian, Y. F.; Xue, X. Y.; Gu, Y.; Yang, Z. X.; Hong, G.; Wang, C. D. Electrodeposition of Ni3Se2/MoSex as a bifunctional electrocatalyst towards highly-efficient overall water splitting. Nanoscale 2020, 12, 23125–23133.

    Article  CAS  Google Scholar 

  48. Li, Y. Q.; Wang, C.; Cui, M.; Xiong, J. B.; Mi, L. W.; Chen, S. R. Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2021, 543, 148804.

    Article  CAS  Google Scholar 

  49. Li, X. P.; Wang, Y.; Wang, J. J.; Da, Y. M.; Zhang, J. F.; Li, L. L.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 2003414.

    Article  CAS  Google Scholar 

  50. Gong, Y. Q.; Yang, Z.; Lin, Y.; Wang, J. L.; Pan, H. L.; Xu, Z. F. Hierarchical heterostructure NiCo2O4@CoMoO4/NF as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 16950–16958.

    Article  CAS  Google Scholar 

  51. Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2011, 4, 11973–12000.

    Article  Google Scholar 

  52. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  CAS  Google Scholar 

  53. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

    Article  CAS  Google Scholar 

  54. Zhang, S.; Zhang, X.; Rui, Y.; Wang, R. H.; Li, X. J. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy Environ. 2021, 6, 458–478.

    Article  Google Scholar 

  55. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

    Article  CAS  Google Scholar 

  56. Wei, J. M.; Zhou, M.; Long, A. C.; Xue, Y. M.; Liao, H. B.; Wei, C.; Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Lett. 2018, 10, 75.

    CAS  Google Scholar 

  57. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

    Article  Google Scholar 

  58. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163–184.

    Article  CAS  Google Scholar 

  59. Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

    Article  CAS  Google Scholar 

  60. Zhu, J. B.; Xiao, M. L.; Zhang, Y. L.; Jin, Z.; Peng, Z. Q.; Liu, C. P.; Chen, S. L.; Ge, J. J.; Xing, W. Metal—organic framework-induced synthesis of ultrasmall encased NiFe nanoparticles coupling with graphene as an efficient oxygen electrode for a rechargeable Zn-air battery. ACS Catal. 2011, 6, 6335–6342.

    Article  Google Scholar 

  61. McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

    Article  CAS  Google Scholar 

  62. Liang, Q. H.; Brocks, G.; Bieberle-Hütter, A. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J. Phys. Energy 2021, 3, 026001.

    Article  CAS  Google Scholar 

  63. Yan, Z. H.; Liu, H. H.; Hao, Z. M.; Yu, M.; Chen, X.; Chen, J. Electrodeposition of (hydro) oxides for an oxygen evolution electrode. Chem. Sci. 2020, 11, 10614–10625.

    Article  CAS  Google Scholar 

  64. Velasco-Vélez, J. J.; Carbonio, E. A.; Chuang, C. H.; Hsu, C. J.; Lee, J. F.; Arrigo, R.; Hävecker, M.; Wang, R. Z.; Plodinec, M.; Wang, F. R. et al. Surface electron—hole rich species active in the electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 12524–12534.

    Article  Google Scholar 

  65. Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408–413.

    Article  CAS  Google Scholar 

  66. Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. L.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 2021, 143, 1493–1502.

    Article  CAS  Google Scholar 

  67. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    Article  CAS  Google Scholar 

  68. Kuo, D. Y.; Paik, H.; Kloppenburg, J.; Faeth, B.; Shen, K. M.; Schlom, D. G.; Hautier, G.; Suntivich, J. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): A discussion of the sabatier principle and its role in electrocatalysis. J. Am. Chem. Soc. 2018, 140, 17597–17605.

    Article  CAS  Google Scholar 

  69. Ge, X. M.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. L. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts. ACS Catal. 2015, 5, 4643–4667.

    Article  CAS  Google Scholar 

  70. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  Google Scholar 

  71. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  72. Ma, R. G.; Lin, G. X.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G. C.; Yang, M. H.; Wang, J. C. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 2019, 5, 78.

    Article  Google Scholar 

  73. Kim, Y. T.; Lopes, P. P.; Park, S. A.; Lee, A. Y.; Lim, J.; Lee, H.; Back, S.; Jung, Y.; Danilovic, N.; Stamenkovic, V. et al. Balancing activity, stability and conductivity of nanoporous core—shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 2017, 8, 1449.

    Article  Google Scholar 

  74. Masa, J.; Andronescu, C.; Schuhmann, W. Electrocatalysis as the nexus for sustainable renewable energy: The gordian knot of activity, stability, and selectivity. Angew. Chem., Int. Ed. 2020, 59, 15298–15312.

    Article  CAS  Google Scholar 

  75. Dastafkan, K.; Meyer, Q.; Chen, X. J.; Zhao, C. Efficient oxygen evolution and gas bubble release achieved by a low gas bubble adhesive iron-nickel vanadate electrocatalyst. Small 2020, 16, 2002412.

    Article  CAS  Google Scholar 

  76. Li, Y. G.; Lu, J. Metal-air batteries: Will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2017, 2, 1370–1377.

    Article  CAS  Google Scholar 

  77. Liu, X. E.; Park, M.; Kim, M. G.; Gupta, S.; Wu, G.; Cho, J. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2015, 54, 9654–9658.

    Article  CAS  Google Scholar 

  78. Moriau, L.; Bele, M.; Marinko, Ž.; Ruiz-Zepeda, F.; Podboršek, G. K.; Šala, M.; Šurca, A. K.; Kovač, J.; Arčon, I.; Jovanovič, P. et al. Effect of the morphology of the high-surface-area support on the performance of the oxygen-evolution reaction for iridium nanoparticles. ACS Catal. 2021, 11, 670–681.

    Article  CAS  Google Scholar 

  79. Xiao, J. W.; Kuang, Q.; Yang, S. H.; Xiao, F.; Wang, S.; Guo, L. Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction. Sci. Rep. 2013, 3, 2300.

    Article  Google Scholar 

  80. Huang, Z. F.; Wang, J.; Peng, Y. C.; Jung, C. Y.; Fisher, A.; Wang, X. Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: Recent advances and perspectives. Adv. Energy Mater. 2017, 7, 1700544.

    Article  Google Scholar 

  81. Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

    Article  CAS  Google Scholar 

  82. Zhu, C. L.; Yin, Z. X.; Lai, W. H.; Sun, Y.; Liu, L. N.; Zhang, X. T.; Chen, Y. J.; Chou, S. L. Fe-Ni-Mo nitride porous nanotubes for full water splitting and Zn-air batteries. Adv. Energy Mater. 2018, 8, 1802327.

    Article  Google Scholar 

  83. Lu, Q.; Yu, J.; Zou, X. H.; Liao, K. M.; Tan, P.; Zhou, W.; Ni, M.; Shao, Z. P. Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 2019, 29, 1904481.

    Article  Google Scholar 

  84. Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

    Article  CAS  Google Scholar 

  85. Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 2019, 7, 14971–15005.

    Article  CAS  Google Scholar 

  86. Matanovic, I.; Garzon, F. H. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: A density functional study. Phys. Chem. Chem. Phys. 2018, 20, 14679–14687.

    Article  CAS  Google Scholar 

  87. Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2011, 1, 589–594.

    Article  Google Scholar 

  88. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  CAS  Google Scholar 

  89. Zhang, Z.; Ma, X. X.; Tang, J. L. Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction. J. Mater. Chem. A 2018, 6, 12361–12369.

    Article  CAS  Google Scholar 

  90. Goodenough, J. B.; Huang, Y. H. Alternative anode materials for solid oxide fuel cells. J. Power Sources 2007, 173, 1–10.

    Article  CAS  Google Scholar 

  91. Chu, H. Q.; Zhang, D.; Jin, B. W.; Yang, M. Impact of morphology on the oxygen evolution reaction of 3D hollow cobalt-molybdenum nitride. Appl. Catal. B: Environ. 2019, 255, 117744.

    Article  CAS  Google Scholar 

  92. Moon, B. C.; Choi, W. H.; Kim, K. H.; Park, D. G.; Choi, J. W.; Kang, J. K. Ultrafine metallic nickel domains and reduced molybdenum states improve oxygen evolution reaction of NiFeMo electrocatalysts. Small 2019, 15, 1804764.

    Article  Google Scholar 

  93. Ji, S. C.; Chen, W. S.; Zhao, Z. X.; Yu, X.; Park, H. S. Molybdenum oxynitride nanoparticles on nitrogen-doped CNT architectures for the oxygen evolution reaction. Nanoscale Adv. 2020, 2, 5659–5665.

    Article  CAS  Google Scholar 

  94. Srirapu, V. K. V. P.; Sharma, C. S.; Awasthi, R.; Singh, R. N.; Sinha, A. S. K. Copper-iron-molybdenum mixed oxides as efficient oxygen evolution electrocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 7385–7393.

    Article  CAS  Google Scholar 

  95. Jin, Y. S.; Huang, S. L.; Yue, X.; Du, H. Y.; Shen, P. K. Mo-and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363.

    Article  CAS  Google Scholar 

  96. Zhou, S.; Yang, X. W.; Pei, W.; Liu, N. S.; Zhao, J. J. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 2018, 10, 10876–10883.

    Article  CAS  Google Scholar 

  97. Liu, W. K.; Cai, J. N.; Huang, B. H.; Zhang, X. F.; Lin, S. Synergistic catalytic effects of MoO2 and vulcan carbon on the oxygen reduction reaction. New J. Chem. 2021, 43, 2775–2780.

    Article  Google Scholar 

  98. Lu, D. L.; Ren, X. H.; Ren, L.; Xue, W. M.; Liu, S. Q.; Liu, Y. D.; Chen, Q.; Qi, X.; Zhong, J. X. Direct vapor deposition growth of 1T′ MoTe2 on carbon cloth for electrocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 3212–3219.

    Article  CAS  Google Scholar 

  99. Li, N.; Wu, J. J.; Lu, Y. T.; Zhao, Z. J.; Zhang, H. C.; Li, X. T.; Zheng, Y. Z.; Tao, X. Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 238, 27–37.

    Article  CAS  Google Scholar 

  100. Frindt, R. F. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 1966, 37, 1928–1929.

    Article  CAS  Google Scholar 

  101. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2011, 340, 1226419.

    Article  Google Scholar 

  102. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. 2011, 123, 11289–11293.

    Article  Google Scholar 

  103. Zhang, X. Y.; Ma, G. Q.; Wang, J. Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten 2019, 1, 59–79.

    Article  Google Scholar 

  104. Bosi, M. Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: A review. RSC Adv. 2015, 5, 75500–75518.

    Article  CAS  Google Scholar 

  105. Urbanová, V.; Lazar, P.; Antonatos, N.; Sofer, Z.; Otyepka, M.; Pumera, M. Positive and negative effects of dopants toward electrocatalytic activity of MoS2 and WS2: Experiments and theory. ACS Appl. Mater. Interfaces 2020, 12, 20383–20392.

    Article  Google Scholar 

  106. Wu, X.; Zhang, H. B.; Zhang, J.; Lou, X. W. Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 2021, 33, 2008376.

    Article  CAS  Google Scholar 

  107. Chia, X.; Eng, A. Y. S.; Ambrosi, A.; Tan, S. M.; Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 2015, 115, 11941–11966.

    Article  CAS  Google Scholar 

  108. Sadighi, Z.; Liu, J. P.; Zhao, L.; Ciucci, F.; Kim, J. K. Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries. Nanoscale 2018, 10, 22549–22559.

    Article  CAS  Google Scholar 

  109. Andrews, K.; Bowman, A.; Rijal, U.; Chen, P. Y.; Zhou, Z. X. Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer. ACS Nano 2020, 14, 6232–6241.

    Article  CAS  Google Scholar 

  110. Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G. Y.; Sun, Y. B.; Yang, Y.; Ren, T. L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264.

    Article  CAS  Google Scholar 

  111. Jiang, J.; Chen, Z. Z.; Hu, Y.; Xiang, Y.; Zhang, L. F.; Wang, Y. P.; Wang, G. C.; Shi, J. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 2021, 16, 894–901.

    Article  CAS  Google Scholar 

  112. Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 2018, 14, 1703293.

    Article  Google Scholar 

  113. Kuc, A.; Heine, T. The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chem. Soc. Rev. 2015, 44, 2603–2614.

    Article  CAS  Google Scholar 

  114. Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

    Article  CAS  Google Scholar 

  115. Strachan, J.; Masters, A. F.; Maschmeyer, T. 3R-MoS2 in review: History, status, and outlook. ACS Appl. Energy Mater. 2021, 4, 7405–7418.

    Article  CAS  Google Scholar 

  116. Tributsch, H. Layer-type transition metal dichalcogenides—A new class of electrodes for electrochemical solar cells. Ber. Bunsenges. Phys. Chem. 1977, 81, 361–369.

    Article  CAS  Google Scholar 

  117. Tributsch, H.; Bennett, J. C. Electrochemistry and photochemistry of MoS2 layer crystals. I. J. Electroanal. Chem. Interfacial Electrochem. 1977, 81, 97–111.

    Article  CAS  Google Scholar 

  118. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  CAS  Google Scholar 

  119. Zhang, J.; Wang, T.; Liu, P.; Liu, S. H.; Dong, R. H.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2011, 9, 2789–2793.

    Article  Google Scholar 

  120. Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

    Article  CAS  Google Scholar 

  121. Zhang, Z. X.; Wang, Y. X.; Leng, X. X.; Crespi, V. H.; Kang, F. Y.; Lv, R. T. Controllable edge exposure of MoS2 for efficient hydrogen evolution with high current density. ACS Appl. Energy Mater. 2018, 1, 1268–1275.

    Article  CAS  Google Scholar 

  122. Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.

    Article  Google Scholar 

  123. Zhou, Q.; Feng, J. R.; Peng, X. W.; Zhong, L. X.; Sun, R. C. Porous carbon coupled with an interlaced MoP—MoS2 heterojunction hybrid for efficient hydrogen evolution reaction. J. Energy Chem. 2020, 43, 45–51.

    Article  Google Scholar 

  124. Chen, Y. C.; Lu, A. Y.; Lu, P.; Yang, X. L.; Jiang, C. M.; Mariano, M.; Kaehr, B.; Lin, O.; Taylor, A.; Sharp, I. D. et al. Structurally deformed MoS2 for electrochemically stable, thermally resistant, and highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1703863.

    Article  Google Scholar 

  125. Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2011, 118, 16632–16638.

    Google Scholar 

  126. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2011, 15, 48–53.

    Article  Google Scholar 

  127. Li, D. Y.; Zhao, L. L.; Xia, Q.; Wang, J.; Liu, X. M.; Xu, H. R.; Chou, S. L. Activating MoS2 nanoflakes via sulfur defect engineering wrapped on CNTs for stable and efficient Li-O2 batteries. Adv. Funct. Mater. 2022, 32, 2108153.

    Article  CAS  Google Scholar 

  128. Lau, T. H. M.; Wu, S.; Kato, R.; Wu, T. S.; Kulhavý, J.; Mo, J. Y.; Zheng, J. W.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 2019, 9, 7527–7534.

    Article  CAS  Google Scholar 

  129. Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

    Article  CAS  Google Scholar 

  130. Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

    Article  CAS  Google Scholar 

  131. Wang, L. L.; Liu, X.; Zhang, Q. F.; Zhou, G.; Pei, Y.; Chen, S. H.; Wang, J.; Rao, A. M.; Yang, H. G.; Lu, B. G. Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 2019, 61, 194–200.

    Article  CAS  Google Scholar 

  132. Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.

    Article  CAS  Google Scholar 

  133. Tang, B. S.; Yu, Z. G.; Seng, H. L.; Zhang, N. D.; Liu, X. X.; Zhang, Y. W.; Yang, W. F.; Gong, H. Simultaneous edge and electronic control of MoS2 nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale 2018, 10, 20113–20119.

    Article  CAS  Google Scholar 

  134. Mosconi, D.; Till, P.; Calvillo, L.; Kosmala, T.; Garoli, D.; Debellis, D.; Martucci, A.; Agnoli, S.; Granozzi, G. Effect of Ni doping on the MoS2 structure and its hydrogen evolution activity in acid and alkaline electrolytes. Surfaces 2019, 2, 531–545.

    Article  CAS  Google Scholar 

  135. Xiong, Q. Z.; Zhang, X.; Wang, H. J.; Liu, G. Q.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem. Commun. 2018, 54, 3859–3862.

    Article  CAS  Google Scholar 

  136. Ding, X. Q.; Li, X. T.; Lv, X. D.; Zheng, Y. Z.; Wu, Q. B.; Ding, H. Y.; Wu, J. J.; Li, R.; Tao, X. Composition engineering-triggered bifunctionality of free-standing coral-like 1T-MoS2 for highly efficient overall water splitting. Energy Technol. 2020, 8, 2000268.

    Article  CAS  Google Scholar 

  137. Sun, T.; Wang, J.; Chi, X.; Lin, Y. X.; Chen, Z. X.; Ling, X.; Qiu, C. T.; Xu, Y. S.; Song, L.; Chen, W. et al. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 2018, 8, 7585–7592.

    Article  CAS  Google Scholar 

  138. Wang, Y. Y.; Wang, M. R.; Lu, Z. S.; Ma, D. W.; Jia, Y. Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T’-MoS2 with anchored transition metal single atoms. Nanoscale 2021, 13, 13390–13400.

    Article  CAS  Google Scholar 

  139. Liu, C.; Dong, H. L.; Ji, Y. J.; Hou, T. J.; Li, Y. Y. Origin of the catalytic activity of phosphorus doped MoS2 for oxygen reduction reaction (ORR) in alkaline solution: A theoretical study. Sci. Rep. 2018, 8, 13292.

    Article  Google Scholar 

  140. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. 2011, 128, 6814–6819.

    Article  Google Scholar 

  141. Shao, D. M.; Li, P. W.; Zhang, R. Z.; Zhao, C. H.; Wang, D. Q.; Zhao, C. J. One-step preparation of Fe-doped Ni3S2/rGO@NF electrode and its superior OER performances. Int. J. Hydrogen Energy 2019, 44, 2664–2674.

    Article  CAS  Google Scholar 

  142. Li, Z. J.; Wang, X. M.; Wang, X. H.; Lin, Y. S.; Meng, A. L.; Yang, L. N.; Li, Q. D. Mn-Cd-S@ amorphous-Ni3S2 hybrid catalyst with enhanced photocatalytic property for hydrogen production and electrocatalytic OER. Appl. Surf. Sci. 2019, 491, 799–806.

    Article  CAS  Google Scholar 

  143. Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 2019, 29, 1808367.

    Article  Google Scholar 

  144. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  145. Wang, C. P.; Kong, L. J.; Sun, H.; Zhong, M.; Cui, H. J.; Zhang, Y. H.; Wang, D. H.; Zhu, J.; Bu, X. H. Carbon layer coated Ni3S2/MoS2 nanohybrids as efficient bifunctional electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 5603–5609.

    Article  CAS  Google Scholar 

  146. Li, J. T.; Chu, D.; Baker, D. R.; Dong, H.; Jiang, R. Z.; Tran, D. T. Distorted inverse spinel nickel cobaltite grown on a MoS2 plate for significantly improved water splitting activity. Chem. Mater. 2019, 31, 7590–7600.

    Article  CAS  Google Scholar 

  147. Liu, Y. K.; Hu, B.; Wu, S. D.; Wang, M. H.; Zhang, Z. H.; Cui, B. B.; He, L. H.; Du, M. Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Appl. Catal. B: Environ. 2019, 258, 117970.

    Article  CAS  Google Scholar 

  148. Xu, X. B.; Zhong, W.; Zhang, L.; Liu, G. X.; Xu, W.; Zhang, Y.; Du, Y. W. NiCo-LDHs derived NiCo2S4 nanostructure coated by MoS2 nanosheets as high-efficiency bifunctional electrocatalysts for overall water splitting. Surf. Coat. Technol. 2020, 397, 126065.

    Article  CAS  Google Scholar 

  149. Ji, D. X.; Peng, S. J.; Fan, L.; Li, L. L.; Qin, X. H.; Ramakrishna, S. Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 2017, 5, 23898–23908.

    Article  CAS  Google Scholar 

  150. Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

    Article  CAS  Google Scholar 

  151. Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 2017, 27, 1702300.

    Article  Google Scholar 

  152. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  153. Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156–13164.

    Article  CAS  Google Scholar 

  154. Tang, H.; Dou, K. P.; Kaun, C. C.; Kuang, Q.; Yang, S. H. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J. Mater. Chem. A 2014, 2, 360–364.

    Article  CAS  Google Scholar 

  155. Masurkar, N.; Thangavel, N. K.; Arava, L. M. R. CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 27771–27779.

    Article  CAS  Google Scholar 

  156. Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

    Article  CAS  Google Scholar 

  157. Zhang, J. Y.; Wang, T. T.; Liu, P. T.; Liu, Y. G.; Ma, J.; Gao, D. Q. Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution. Electrochim. Acta 2011, 217, 181–186.

    Article  Google Scholar 

  158. Liu, Y. G.; Liu, S.; Li, H. X.; Yu, L. J.; Sun, L.; Xue, J. L.; Xu, R. J.; Chen, G. X. In-situ phase conversion of composited 1T@2H-MoSe2 nanosheets with enhanced HER performance. Mater. Chem. Phys. 2022, 278, 125657.

    Article  CAS  Google Scholar 

  159. Qu, Y. D.; Medina, H.; Wang, S. W.; Wang, Y. C.; Chen, C. W.; Su, T. Y.; Manikandan, A.; Wang, K. Y.; Shih, Y. C.; Chang, J. W. et al. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core—shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2011, 28, 9831–9838.

    Article  Google Scholar 

  160. Deng, S. J.; Yang, F.; Zhang, Q. H.; Zhong, Y.; Zeng, Y. X.; Lin, S. W.; Wang, X. L.; Lu, X. H.; Wang, C. Z.; Gu, L. et al. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Adv. Mater. 2018, 30, 1802223.

    Article  Google Scholar 

  161. Deng, S. J.; Ai, C. Z.; Luo, M.; Liu, B.; Zhang, Y.; Li, Y. H.; Lin, S. W.; Pan, G. X.; Xiong, Q. Q.; Liu, Q. et al. Coupled biphase (1T-2H)-MoSe2 on mold spore carbon for advanced hydrogen evolution reaction. Small 2019, 15, 1901796.

    Article  Google Scholar 

  162. Xiang, T.; Tao, S.; Xu, W. Y.; Fang, Q.; Wu, C. Q.; Liu, D. B.; Zhou, Y.; Khalil, A.; Muhammad, Z.; Chu, W. S. et al. Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: Binder-free and high-performance Li-ion anode. ACS Nano 2017, 11, 6483–6491.

    Article  CAS  Google Scholar 

  163. He, B.; Li, G. Y.; Li, J. J.; Wang, J.; Tong, H.; Fan, Y. Q.; Wang, W. L.; Sun, S. H.; Dang, F. MoSe2@CNT core—shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries. Adv. Energy Mater. 2021, 11, 2003263.

    Article  CAS  Google Scholar 

  164. Upadhyay, S.; Pandey, O. P. Effect of Se content on the oxygen evolution reaction activity and capacitive performance of MoSe2 nanoflakes. Electrochim. Acta 2022, 412, 140109.

    Article  CAS  Google Scholar 

  165. Vikraman, D.; Hussain, S.; Akbar, K.; Karuppasamy, K.; Chun, S. H.; Jung, J.; Kim, H. S. Design of basal plane edges in metal-doped nanostripes-structured MoSe2 atomic layers to enhance hydrogen evolution reaction activity. ACS Sustain Chem. Eng. 2019, 7, 458–469.

    Article  CAS  Google Scholar 

  166. Jain, A.; Sadan, M. B.; Ramasubramaniam, A. Promoting active sites for hydrogen evolution in MoSe2 via transition-metal doping. J. Phys. Chem. C 2020, 124, 12324–12336.

    Article  CAS  Google Scholar 

  167. Qin, Z. M.; Zhao, J. X. 1T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER. J. Colloid Interface Sci. 2022, 605, 155–162.

    Article  CAS  Google Scholar 

  168. Li, N.; Zhang, Y. F.; Jia, M. L.; Lv, X. D.; Li, X. T.; Li, R.; Ding, X. Q.; Zheng, Y. Z.; Tao, X. 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim. Acta 2019, 326, 134976.

    Article  CAS  Google Scholar 

  169. Chen, Z. W.; Wang, W. W.; Huang, S. S.; Ning, P.; Wu, Y.; Gao, C. Y.; Le, T. T.; Zai, J. T.; Jiang, Y.; Hu, Z. J. et al. Well-defined CoSe2@MoSe2 hollow heterostructured nanocubes with enhanced dissociation kinetics for overall water splitting. Nanoscale 2020, 12, 326–335.

    Article  CAS  Google Scholar 

  170. Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

    Article  CAS  Google Scholar 

  171. Rai, R. K.; Sarkar, B.; Ram, R.; Nanda, K. K.; Ravishankar, N. Designed synthesis of a hierarchical MoSe2@WSe2 hybrid nanostructure as a bifunctional electrocatalyst for total water-splitting. Sustainable Energy Fuels 2022, 6, 1708–1718.

    Article  CAS  Google Scholar 

  172. Zong, H.; Yu, K.; Zhu, Z. Q. Heterostructure nanohybrids of Ni-doped MoSe2 coupled with Ti2NTx toward efficient overall water splitting. Electrochim. Acta 2020, 353, 136598.

    Article  CAS  Google Scholar 

  173. Zhang, Z. Y.; Ye, S.; Ji, J.; Li, Z. L.; Wang, F. Core/shell-structured NiMoO4@MoSe2/NixSey nanorod on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. Colloids Surf. A: Physicochem. Eng. Aspects 2020, 599, 124888.

    Article  CAS  Google Scholar 

  174. Oh, N. K.; Seo, J.; Lee, S.; Kim, H. J.; Kim, U.; Lee, J.; Han, Y. K.; Park, H. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 2021, 12, 4606.

    Article  CAS  Google Scholar 

  175. Gholamvand, Z.; McAteer, D.; Backes, C.; McEvoy, N.; Harvey, A.; Berner, N. C.; Hanlon, D.; Bradley, C.; Godwin, I.; Rovetta, A. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 2011, 8, 5737–5749.

    Article  Google Scholar 

  176. Cunningham, G.; Hanlon, D.; McEvoy, N.; Duesberg, G. S.; Coleman, J. N. Large variations in both dark-and photoconductivity in nanosheet networks as nanomaterial is varied from MoS2 to WTe2. Nanoscale 2015, 7, 198–208.

    Article  CAS  Google Scholar 

  177. McGlynn, J. C.; Cascallana-Matías, I.; Fraser, J. P.; Roger, I.; McAllister, J.; Miras, H. N.; Symes, M. D.; Ganin, A. Y. Molybdenum ditelluride rendered into an efficient and stable electrocatalyst for the hydrogen evolution reaction by polymorphic control. Energy Technol. 2018, 6, 345–350.

    Article  CAS  Google Scholar 

  178. Zhou, Y. X.; Jia, L. P.; Feng, Q. L.; Wang, T. X.; Li, X.; Wang, C. M. MoTe2 nanodendrites based on Mo doped reduced graphene oxide/polyimide composite film for electrocatalytic hydrogen evolution in neutral solution. Electrochim. Acta 2017, 229, 121–128.

    Article  CAS  Google Scholar 

  179. Ge, L.; Yuan, H.; Min, Y. X.; Li, L.; Chen, S. Q.; Xu, L.; Goddard III, W. A. Predicted optimal bifunctional electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction using chalcogenide heterostructures based on machine learning analysis of in silico quantum mechanics based high throughput screening. J. Phys. Chem. Lett. 2020, 11, 869–876.

    Article  CAS  Google Scholar 

  180. Xiao, Z. H.; Gan, X. R.; Zhu, T. H.; Lei, D. Y.; Zhao, H. M.; Wang, P. F. Activating the basal planes in 2H-MoTe2 monolayers by incorporating single-atom dispersed N or P for enhanced electrocatalytic overall water splitting. Adv. Sustainable Syst. 2022, 6, 2100515.

    Article  CAS  Google Scholar 

  181. Xiao, Y.; Shen, C. Predicted electrocatalyst properties on metal insulator MoTe2 for hydrogen evolution reaction and oxygen reduction reaction application in fuel cells. Energy Fuels 2021, 13, 8275–8285.

    Article  Google Scholar 

  182. Gao, C.; Rao, D. W.; Yang, H.; Yang, S. K.; Ye, J. J.; Yang, S. S.; Zhang, C. N.; Zhou, X. C.; Jing, T. Y.; Yan, X. H. Dual transition-metal atoms doping: An effective route to promote the ORR and OER activity on MoTe2. New J. Chem. 2021, 45, 5589–5595.

    Article  CAS  Google Scholar 

  183. Zhang, W. Q.; Wang, J.; Zhao, L. L.; Wang, J. R.; Zhao, M. W. Transition-metal monochalcogenide nanowires: Highly efficient bi-functional catalysts for the oxygen evolution/reduction reactions. Nanoscale 2020, 12, 12883–12890.

    Article  CAS  Google Scholar 

  184. Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025–3033.

    Article  CAS  Google Scholar 

  185. Hwu, H. H.; Chen, J. G. Surface chemistry of transition metal carbides. Chem. Rev. 2005, 105, 185–212.

    Article  CAS  Google Scholar 

  186. Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. 2014, 126, 6525–6528.

    Article  Google Scholar 

  187. Xu, Z. Z.; Lv, X. D.; Gu, W. Y.; Li, F. Y. MC2 (M = Y, Zr, Nb, and Mo) monolayers containing C2 dimers: Prediction of anode materials for high-performance sodium ion batteries. Nanoscale Adv. 2021, 3, 6617–6627.

    Article  CAS  Google Scholar 

  188. Lee, J. S.; Oyama, S. T.; Boudart, M. Molybdenum carbide catalysts: I. Synthesis of unsupported powders. J. Catal. 1987, 106, 125–133.

    Article  CAS  Google Scholar 

  189. dos Santos Politi, J. R.; Viñes, F.; Rodriguez, J. A.; Illas, F. Atomic and electronic structure of molybdenum carbide phases: Bulk and low Miller-index surfaces. Phys. Chem. Chem. Phys. 2011, 15, 12617–12625.

    Article  Google Scholar 

  190. Weidman, M. C.; Esposito, D. V.; Hsu, Y. C.; Chen, J. G. Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources 2012, 202, 11–17.

    Article  CAS  Google Scholar 

  191. Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.

    Article  CAS  Google Scholar 

  192. Michalsky, R.; Zhang, Y. J.; Peterson, A. A. Trends in the hydrogen evolution activity of metal carbide catalysts. ACS Catal. 2014, 4, 1274–1278.

    Article  CAS  Google Scholar 

  193. Regmi, Y. N.; Waetzig, G. R.; Duffee, K. D.; Schmuecker, S. M.; Thode, J. M.; Leonard, B. M. Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. J. Mater. Chem. A 2015, 1, 10085–10091.

    Article  Google Scholar 

  194. Huang, J. J.; Wang, J. Y.; Xie, R. K.; Tian, Z. H.; Chai, G. L.; Zhang, Y. W.; Lai, F. L.; He, G. J.; Liu, C. T.; Liu, T. X. et al. A universal pH range and a highly efficient Mo2C-based electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 19879–19886.

    Article  CAS  Google Scholar 

  195. Ouyang, T.; Chen, A. N.; He, Z. Z.; Liu, Z. Q.; Tong, Y. X. Rational design of atomically dispersed nickel active sites in β-Mo2C for the hydrogen evolution reaction at all pH values. Chem. Commun. 2018, 54, 9901–9904.

    Article  CAS  Google Scholar 

  196. Wang, Y. Z.; Ding, Y. M.; Zhang, C. H.; Xue, B. W.; Li, N. W.; Yu, L. Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution. Rare Met. 2021, 40, 2785–2792.

    Article  CAS  Google Scholar 

  197. Luo, Y.; Wang, Z. J.; Fu, Y.; Jin, C.; Wei, Q.; Yang, R. Z. In situ preparation of hollow Mo2C-C hybrid microspheres as bifunctional electrocatalysts for oxygen reduction and evolution reactions. J. Mater. Chem. A 2011, 4, 12583–12590.

    Article  Google Scholar 

  198. Ge, R. Y.; Huo, J. J.; Sun, M. J.; Zhu, M. Y.; Li, Y.; Chou, S. L.; Li, W. X. Surface and interface engineering: Molybdenum carbide-based nanomaterials for electrochemical energy conversion. Small 2021, 17, 1903380.

    Article  CAS  Google Scholar 

  199. Kwak, W. J.; Lau, K. C.; Shin, C. D.; Amine, K.; Curtiss, L. A.; Sun, Y. K. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 2015, 9, 4129–4137.

    Article  CAS  Google Scholar 

  200. Wang, H.; Cao, Y. J.; Sun, C.; Zou, G. F.; Huang, J. W.; Kuai, X. X.; Zhao, J. Q.; Gao, L. J. Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting. ChemSusChem 2017, 10, 3540–3546.

    Article  CAS  Google Scholar 

  201. Regmi, Y. N.; Wan, C.; Duffee, K. D.; Leonard, B. M. Nanocrystalline Mo2C as a bifunctional water splitting electrocatalyst. ChemCatChem 2015, 7, 3911–3915.

    Article  CAS  Google Scholar 

  202. Xu, Y.; Yang, J.; Liao, T.; Ge, R. Y.; Liu, Y.; Zhang, J. J.; Li, Y.; Zhu, M. Y.; Li, S. A.; Li, W. X. Bifunctional water splitting enhancement by manipulating Mo—H bonding energy of transition metal—Mo2C heterostructure catalysts. Chem. Eng. J. 2022, 431, 134126.

    Article  CAS  Google Scholar 

  203. Xing, J. N.; Li, Y.; Guo, S. W.; Jin, T.; Li, H. X.; Wang, Y. J.; Jiao, L. F. Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 2019, 298, 305–312.

    Article  CAS  Google Scholar 

  204. Ni, J. F.; Zhao, Y.; Li, L.; Mai, L. Q. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 2015, 11, 129–135.

    Article  CAS  Google Scholar 

  205. Qu, K. G.; Zheng, Y.; Jiao, Y.; Zhang, X. X.; Dai, S.; Qiao, S. Z. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1602068.

    Article  Google Scholar 

  206. Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.

    Article  Google Scholar 

  207. Wohlgemuth, S. A.; White, R. J.; Willinger, M. G.; Titirici, M. M.; Antonietti, M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem. 2012, 14, 1515–1523.

    Article  CAS  Google Scholar 

  208. Luo, X. H.; Zhou, Q. L.; Du, S.; Li, J.; Zhong, J. W.; Deng, X. L.; Liu, Y. L. Porous Co9S8/nitrogen, sulfur-doped carbon@Mo2C dual catalyst for efficient water splitting. ACS Appl. Mater. Interfaces 2018, 10, 22291–22302.

    Article  CAS  Google Scholar 

  209. Cheng, Y.; Xu, C. W.; Jia, L. C.; Gale, J. D.; Zhang, L. L.; Liu, C.; Shen, P. K.; Jiang, S. P. Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Appl. Catal. B: Environ. 2015, 163, 96–104.

    Article  CAS  Google Scholar 

  210. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. 2014, 126, 7409–7413.

    Article  Google Scholar 

  211. Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Prato, M.; Martín-García, B.; Brescia, R.; Bonaccorso, F. Carbon nanotube-supported MoSe2 holey flake: Mo2C ball hybrids for bifunctional pH-universal water splitting. ACS Nano 2019, 13, 3162–3176.

    Article  CAS  Google Scholar 

  212. Wang, J. Y.; Ouyang, T.; Deng, Y. P.; Hong, Y. S.; Liu, Z. Q. Metallic Mo2C anchored pyrrolic-N induced N-CNTs/NiS2 for efficient overall water electrolysis. J. Power Sources 2019, 420, 108–117.

    Article  CAS  Google Scholar 

  213. Sun, T. T.; Xu, L. B.; Yan, Y. S.; Zakhidov, A. A.; Baughman, R. H.; Chen, J. F. Ordered mesoporous nickel sphere arrays for highly efficient electrocatalytic water oxidation. ACS Catal. 2011, 6, 1446–1450.

    Article  Google Scholar 

  214. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat. Mater. 2012, 11, 550–557.

    Article  CAS  Google Scholar 

  215. Yu, Z. Y.; Duan, Y.; Gao, M. R.; Lang, C. C.; Zheng, Y. R.; Yu, S. H. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting. Chem. Sci. 2017, 8, 968–973.

    Article  CAS  Google Scholar 

  216. Li, M. X.; Zhu, Y.; Wang, H. Y.; Wang, C.; Pinna, N.; Lu, X. F. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv. Energy Mater. 2019, 9, 1803185.

    Article  Google Scholar 

  217. Ai, L. H.; Su, J. F.; Wang, M.; Jiang, J. Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: An efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain Chem. Eng. 2018, 6, 9912–9920.

    Article  CAS  Google Scholar 

  218. Yuan, S. S.; Xia, M. S.; Liu, Z. P.; Wang, K. W.; Xiang, L. J.; Huang, G. Q.; Zhang, J. Y.; Li, N. Dual synergistic effects between Co and Mo2C in Co/Mo2C heterostructure for electrocatalytic overall water splitting. Chem. Eng. J. 2022, 430, 132697.

    Article  CAS  Google Scholar 

  219. Han, N. N.; Luo, S. W.; Deng, C. W.; Zhu, S.; Xu, Q. J.; Min, Y. L. Defect-rich FeN0.023/Mo2C heterostructure as a highly efficient bifunctional catalyst for overall water-splitting. ACS Appl. Mater. Interfaces 2021, 13, 8306–8314.

    Article  CAS  Google Scholar 

  220. Wang, Y.; Li, K. Y.; Yan, F.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. The integration of Mo2C-embedded nitrogen-doped carbon with Co encapsulated in nitrogen-doped graphene layers derived from metal—organic-frameworks as a multi-functional electrocatalyst. Nanoscale 2019, 11, 12563–12572.

    Article  CAS  Google Scholar 

  221. Wang, S. P.; Bendt, G.; Saddeler, S.; Schulz, S. Synergistic effects of Mo2C-NC@CoxFey core—shell nanoparticles in electrocatalytic overall water splitting reaction. Energy Technol. 2019, 7, 1801121.

    Article  Google Scholar 

  222. Liang, Q. R.; Jin, H. H.; Wang, Z.; Xiong, Y. L.; Yuan, S.; Zeng, X. C.; He, D. P.; Mu, S. C. Metal—organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy 2019, 57, 746–752.

    Article  CAS  Google Scholar 

  223. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal—organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2011, 1, 15006.

    Article  Google Scholar 

  224. Li, X.; Wang, X. L.; Zhou, J.; Han, L.; Sun, C. Y.; Wang, Q. Q.; Su, Z. M. Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal—organic-frameworks for overall water splitting. J. Mater. Chem. A 2018, 6, 5789–5796.

    Article  CAS  Google Scholar 

  225. Anjum, M. A. R.; Lee, M. H.; Lee, J. S. Boron-and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. ACS Catal. 2018, 8, 8296–8305.

    Article  CAS  Google Scholar 

  226. Wei, Z. Q.; Hu, X.; Ning, S. L.; Kang, X. W.; Chen, S. W. Supported heterostructured MoC/Mo2C nanoribbons and nanoflowers as highly active electrocatalysts for hydrogen evolution reaction. ACS Sustain Chem. Eng. 2019, 7, 8458–8465.

    Article  CAS  Google Scholar 

  227. Lin, H. L.; Shi, Z. P.; He, S. N.; Yu, X.; Wang, S. N.; Gao, Q. S.; Tang, Y. Heteronanowires of MoC—Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2011, 7, 3399–3405.

    Article  Google Scholar 

  228. Das, D.; Santra, S.; Nanda, K. K. In situ fabrication of a nickel/molybdenum carbide-anchored N-doped graphene/CNT hybrid: An efficient (pre) catalyst for OER and HER. ACS Appl. Mater Interfaces 2018, 10, 35025–35038.

    Article  CAS  Google Scholar 

  229. Geng, B.; Yan, F.; Liu, L. N.; Zhu, C. L.; Li, B.; Chen, Y. J. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chem. Eng. J. 2021, 406, 126815.

    Article  CAS  Google Scholar 

  230. Wang, Y.; Yan, F.; Ma, X. Z.; Zhu, C. L.; Zhang, X.; Chen, Y. J. Hierarchically 3D bifunctional catalysts assembled with 1D MoC core/branched N-doped CNT arrays for zinc-air batteries. Electrochim. Acta 2021, 367, 137522.

    Article  CAS  Google Scholar 

  231. Zhang, X. P.; Huang, L.; Han, Y. J.; Xu, M.; Dong, S. J. Nitrogen-doped carbon encapsulating γ-MoC/Ni heterostructures for efficient oxygen evolution electrocatalysts. Nanoscale 2017, 9, 5583–5588.

    Article  CAS  Google Scholar 

  232. Guo, Y. N.; Tang, J.; Henzie, J.; Jiang, B.; Qian, H. Y.; Wang, Z. L.; Tan, H. B.; Bando, Y.; Yamauchi, Y. Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen. Mater. Horiz. 2017, 4, 1171–1177.

    Article  CAS  Google Scholar 

  233. Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co—Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

    Article  CAS  Google Scholar 

  234. Huang, H.; Kong, L. J.; Liu, M.; He, J.; Shuang, W.; Xu, Y. H.; Bu, X. H. Constructing bifunctional Co/MoC@N-C catalyst via an in-situ encapsulation strategy for efficient oxygen electrocatalysis. J. Energy Chem. 2021, 59, 538–546.

    Article  CAS  Google Scholar 

  235. Zhang, X. Y.; Wang, J. C.; Guo, T.; Liu, T. Y.; Wu, Z. Z.; Cavallo, L.; Cao, Z.; Wang, D. Z. Structure and phase regulation in MoxC (α-MoC1−x/β-Mo2C) to enhance hydrogen evolution. Appl. Catal. B: Environ. 2019, 247, 78–85.

    Article  CAS  Google Scholar 

  236. Yin, P. N.; Cai, H. Z.; Zhang, X.; Chen, B. B.; Liu, Y.; Gao, R.; Shi, C. α-MoC1−x nanorods as an efficient hydrogen evolution reaction electrocatalyst. New J. Chem. 2021, 45, 10396–10401.

    Article  CAS  Google Scholar 

  237. Baek, D. S.; Lee, J.; Kim, J.; Joo, S. H. Metastable phase-controlled synthesis of mesoporous molybdenum carbides for efficient alkaline hydrogen evolution. ACS Catal. 2022, 12, 7415–7426.

    Article  CAS  Google Scholar 

  238. Lin, L.; Sun, Z. M.; Yuan, M. W.; Yang, H.; Li, H. F.; Nan, C. Y.; Jiang, H. Y.; Ge, S. S.; Sun, G. B. α-MoC1−x quantum dots encapsulated in nitrogen-doped carbon for hydrogen evolution reaction at all pH values. ACS Sustain Chem. Eng. 2019, 7, 9637–9645.

    Article  CAS  Google Scholar 

  239. Yu, H.; Dinh, K. N.; Sun, Y. M.; Fan, H. S.; Wang, Y. H.; Jing, Y.; Li, S. Z.; Srinivasan, M.; Yan, Q. Y. Performance-improved Li-O2 batteries by tailoring the phases of MoxC porous nanorods as an efficient cathode. Nanoscale 2018, 10, 14877–14884.

    Article  CAS  Google Scholar 

  240. Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small 2018, 14, 1704366.

    Article  Google Scholar 

  241. Cui, Z. M.; Li, Y. T.; Fu, G. T.; Li, X.; Goodenough, J. B. Robust Fe3Mo3C supported IrMn clusters as highly efficient bifunctional air electrode for metal-air battery. Adv. Mater. 2017, 29, 1702385.

    Article  Google Scholar 

  242. Li, Y. Q.; Yin, Z. H.; Cui, M.; Chen, S. R.; Ma, T. L. Bimetallic cobalt molybdenum carbide-cobalt composites as superior bifunctional oxygen electrocatalysts for Zn-air batteries. Mater. Today Energy 2020, 18, 100565.

    Article  CAS  Google Scholar 

  243. d’Heurle, F. M.; Petersson, C. S.; Tsai, M. Y. Observations on the hexagonal form of MoSi2 and WSi2 films produced by ion implantation and on related snowplow effects. J. Appl. Phys. 1980, 51, 5976–5980.

    Article  Google Scholar 

  244. Petrovic, J. J. Mechanical behavior of MoSi2 and MoSi2 composites. Mater. Sci. Eng.: A 1995, 192–191, 31–37.

    Article  Google Scholar 

  245. Dang, C. C.; Wang, Y.; He, B.; Zhang, W. B.; Dang, F.; Wang, H. C.; Du, Y. Novel MoSi2 catalysts featuring surface activation as highly efficient cathode materials for long-life Li-O2 batteries. J. Mater. Chem. A 2020, 8, 259–267.

    Article  CAS  Google Scholar 

  246. Streibel, V.; Velasco-Vélez, J. J.; Teschner, D.; Carbonio, E. A.; Knop-Gericke, A.; Schlögl, R.; Jones, T. E. Merging operando and computational X-ray spectroscopies to study the oxygen evolution reaction. Curr. Opin. Electrochem. 2022, 35, 101039.

    Article  CAS  Google Scholar 

  247. Chithambararaj, A.; Yogamalar, N. R.; Bose, A. C. Hydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: New findings on crystal-structure-dependent charge transport. Cryst. Growth Des. 2016, 16, 1984–1995.

    Article  CAS  Google Scholar 

  248. Bandaru, S.; Saranya, G.; English, N. J.; Yam, C.; Chen, M. Y. Tweaking the electronic and optical properties of α-MoO3 by sulphur and selenium doping—A density functional theory study. Sci. Rep. 2018, 8, 10144.

    Article  Google Scholar 

  249. Battaglia, C.; Yin, X. T.; Zheng, M.; Sharp, I. D.; Chen, T.; McDonnell, S.; Azcatl, A.; Carraro, C.; Ma, B. W.; Maboudian, R. et al. Hole selective MoOx contact for silicon solar cells. Nano Lett. 2014, 14, 967–971.

    Article  CAS  Google Scholar 

  250. Magnéli, A.; Blomberg-Hansson, B.; Kihlborg, L.; Sundkvist, G. Studies on molybdenum and molybdenum wolfram oxides of the homologous series MenO3n−1. Acta Chem. Scand. 1955, 9, 1382–1390.

    Article  Google Scholar 

  251. Scanlon, D. O.; Watson, G. W.; Payne, D. J.; Atkinson, G. R.; Egdell, R. G.; Law, D. S. L. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636–4645.

    Article  CAS  Google Scholar 

  252. Chen, J.; Wei, Q. Phase transformation of molybdenum trioxide to molybdenum dioxide: An in-situ transmission electron microscopy investigation. Int. J. Appl. Ceram. Technol. 2017, 14, 1020–1025.

    Article  CAS  Google Scholar 

  253. Jin, Y. S.; Wang, H. T.; Li, J. J.; Yue, X.; Han, Y. J.; Shen, P. K.; Cui, Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2016, 28, 3785–3790.

    Article  CAS  Google Scholar 

  254. Ma, T. J.; Zhang, M. M.; Liu, H.; Wang, Y. Synthesis of CoMoO4-MoO2 nanohybrids supported on graphene as high-efficiency catalyst for hydrogen evolution. J. Electroanal. Chem. 2019, 844, 78–85.

    Article  CAS  Google Scholar 

  255. Jin, Y. S.; Shen, P. K. Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 20080–20085.

    Article  CAS  Google Scholar 

  256. Tang, Y. J.; Gao, M. R.; Liu, C. H.; Li, S. L.; Jiang, H. L.; Lan, Y. Q.; Han, M.; Yu, S. H. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. 2015, 127, 13120–13124.

    Article  Google Scholar 

  257. Xie, X.; Lin, L.; Liu, R. Y.; Jiang, Y. F.; Zhu, Q.; Xu, A. W. The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 8055–8061.

    Article  CAS  Google Scholar 

  258. Lyu, F. L.; Bai, Y. C.; Li, Z. W.; Xu, W. J.; Wang, Q. F.; Mao, J.; Wang, L.; Zhang, X. W.; Yin, Y. D. Self-templated fabrication of CoO-MoO2 nanocages for enhanced oxygen evolution. Adv. Funct. Mater. 2017, 27, 1702324.

    Article  Google Scholar 

  259. Guha, P.; Mohanty, B.; Thapa, R.; Kadam, R. M.; Satyam, P. V.; Jena, B. K. Defect-engineered MoO2 nanostructures as an efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 5208–5218.

    Article  CAS  Google Scholar 

  260. Zhang, C.; Zou, X. L.; Du, Z. G.; Gu, J. N.; Li, S. M.; Li, B.; Yang, S. B. Atomic layers of MoO2 with exposed high-energy (010) facets for efficient oxygen reduction. Small 20 8, 14, 1703960.

  261. Yang, L. J.; Yu, J. Y.; Wei, Z. Q.; Li, G. X.; Cao, L. D.; Zhou, W. J.; Chen, S. W. Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy 2017, 41, 772–779.

    Article  CAS  Google Scholar 

  262. Qiu, Y.; Liu, S. Q.; Wei, C.; Fan, J. X.; Yao, H.; Dai, L. X.; Wang, G. M.; Li, H.; Su, B. L.; Guo, X. H. Synergistic effect between platinum single atoms and oxygen vacancy in MoO2 boosting pH-universal hydrogen evolution reaction at large current density. Chem. Eng. J. 2022, 427, 131309.

    Article  CAS  Google Scholar 

  263. Wang, B. B.; Zhang, Z.; Zhang, S. S.; Cao, Y. C.; Su, Y.; Liu, S. D.; Tang, W.; Yu, J. X.; Ou, Y.; Xie, S. H. et al. Surface excited MoO2 to master full water splitting. Electrochim. Acta 2020, 359, 136929.

    Article  CAS  Google Scholar 

  264. Qian, G. F.; Yu, G. T.; Lu, J. J.; Luo, L.; Wang, T.; Zhang, C. H.; Ku, R. Q.; Yin, S. B.; Chen, W.; Mu, S. C. Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density. J. Mater. Chem. A 2020, 8, 14545–14554.

    Article  CAS  Google Scholar 

  265. Prakash, N. G.; Dhananjaya, M.; Narayana, A. L.; Shaik, D. P. M. D.; Rosaiah, P.; Hussain, O. M. High performance one dimensional α-MoO3 nanorods for supercapacitor applications. Ceram. Int. 2018, 44, 9967–9975.

    Article  CAS  Google Scholar 

  266. Manibalan, G.; Govindaraj, Y.; Yesuraj, J.; Kuppusami, P.; Murugadoss, G.; Murugavel, R.; Kumar, M. R. Facile synthesis of NiO@ Ni(OH)2-α-MoO3 nanocomposite for enhanced solid-state symmetric supercapacitor application. J. Colloid Interface Sci. 2021, 585, 505–518.

    Article  CAS  Google Scholar 

  267. Luo, Z.; Miao, R.; Huan, T. D.; Mosa, I. M.; Poyraz, A. S.; Zhong, W.; Cloud, J. E.; Kriz, D. A.; Thanneeru, S.; He, J. K. et al. Mesoporous MoO3−x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv. Energy Mater. 2016, 6, 1600528.

    Article  Google Scholar 

  268. Li, L.; Zhang, T.; Yan, J. Q.; Cai, X. D.; Liu, S. Z. P doped MoO3−x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small 2017, 13, 1700441.

    Article  Google Scholar 

  269. Liu, W.; Xu, Q.; Yan, P. F.; Chen, J.; Du, Y.; Chu, S. Q.; Wang, J. O. Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: A new protocol by utilization of HxMoO3−x with plasmon resonance. ChemCatChem 2018, 10, 946–950.

    Article  CAS  Google Scholar 

  270. Li, J.; Cheng, Y.; Zhang, J. N.; Fu, J. W.; Yan, W. F.; Xu, Q. Confining Pd nanoparticles and atomically dispersed Pd into defective MoO3 nanosheet for enhancing electro-and photocatalytic hydrogen evolution performances. ACS Appl. Mater. Interfaces 2019, 11, 27798–27804.

    Article  CAS  Google Scholar 

  271. Tariq, M.; Zaman, W. Q.; Sun, W.; Zhou, Z. H.; Wu, Y. Y.; Cao, L. M.; Yang, J. Unraveling the beneficial electrochemistry of IrO2/MoO3 hybrid as a highly stable and efficient oxygen evolution reaction catalyst. ACS Sustain Chem. Eng. 2018, 6, 4854–4862.

    Article  CAS  Google Scholar 

  272. Illathvalappil, R.; George, L.; Kurungot, S. Coexisting few-layer assemblies of NiO and MoO3 deposited on vulcan carbon as an efficient and durable electrocatalyst for water oxidation. ACS Appl. Energy Mater. 2019, 2, 4987–4998.

    Article  CAS  Google Scholar 

  273. Rani, B. J.; Ravi, G.; Yuvakkumar, R.; Ameen, F.; AlNadhari, S.; Hong, S. I. Fabrication and electrochemical OER activity of Ag doped MoO3 nanorods. Mater. Sci. Semicond. Process. 2020, 107, 104818.

    Article  Google Scholar 

  274. Martins, P. F. B. D.; Ticianelli, E. A. Electrocatalytic activity and stability of platinum nanoparticles supported on carbon-molybdenum oxides for the oxygen reduction reaction. ChemElectroChem 2015, 2, 1298–1306.

    Article  CAS  Google Scholar 

  275. Liu, X.; Wang, H. M.; Chen, S. G.; Qi, X. Q.; Gao, H. L.; Hui, Y.; Bai, Y.; Guo, L.; Ding, W.; Wei, Z. D. SO2-tolerant Pt-MoO3/C catalyst for oxygen reduction reaction. J. Energy Chem. 2014, 23, 358–362.

    Article  CAS  Google Scholar 

  276. Karuppasamy, L.; Chen, C. Y.; Anandan, S.; Wu, J. J. High index surfaces of Au-nanocrystals supported on one-dimensional MoO3-nanorod as a bi-functional electrocatalyst for ethanol oxidation and oxygen reduction. Electrochim. Acta 2017, 246, 75–88.

    Article  CAS  Google Scholar 

  277. Li, K.; Ma, J. W.; Guan, X. L.; He, H. W.; Wang, M.; Zhang, G. L.; Zhang, F. B.; Fan, X. B.; Peng, W. C.; Li, Y. 3D self-supported Ni(PO3)2-MoO3 nanorods anchored on nickel foam for highly efficient overall water splitting. Nanoscale 2018, 10, 22173–22179.

    Article  CAS  Google Scholar 

  278. Jin, L. J.; Xu, H.; Wang, C.; Wang, Y.; Shang, H. Y.; Du, Y. K. Multi-dimensional collaboration promotes the catalytic performance of 1D MoO3 nanorods decorated with 2D NiS nanosheets for efficient water splitting. Nanoscale 2020, 12, 21850–21856.

    Article  CAS  Google Scholar 

  279. Chandrasekaran, S.; Kim, E. J.; Chung, J. S.; Bowen, C. R.; Rajagopalan, B.; Adamaki, V.; Misra, R. D. K.; Hur, S. H. High performance bifunctional electrocatalytic activity of a reduced graphene oxide-molybdenum oxide hybrid catalyst. J. Mater. Chem. A 2016, 4, 13271–13279.

    Article  CAS  Google Scholar 

  280. Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Novel metastable hexagonal MoO3 nanobelts: Synthesis, photochromic, and electrochromic properties. Chem. Mater. 2009, 21, 5681–5690.

    Article  CAS  Google Scholar 

  281. Wang, F. M.; Qi, X. P.; Qin, Z. G.; Yang, H.; Liu, C.; Liang, T. X. Construction of hierarchical Prussian blue analogue phosphide anchored on Ni2P@MoOx nanosheet spheres for efficient overall water splitting. Int. J. Hydrogen Energy 2020, 45, 13353–13364.

    Article  CAS  Google Scholar 

  282. Béjar, J.; Álvarez-Contreras, L.; Guerra-Balcázar, M.; Ledesma-García, J.; Arriaga, L. G.; Arjona, N. Synthesis of a small-size metal oxide mixture based on MoOx and NiO with oxygen vacancies as bifunctional electrocatalyst for oxygen reactions. Appl. Surf. Sci. 2020, 509, 144898.

    Article  Google Scholar 

  283. Rammal, M. B.; Omanovic, S. Synthesis and characterization of NiO, MoO3, and NiMoO4 nanostructures through a green, facile method and their potential use as electrocatalysts for water splitting. Mater. Chem. Phys. 2020, 255, 123570.

    Article  CAS  Google Scholar 

  284. Rodriguez, J. A.; Hanson, J. C.; Chaturvedi, S.; Maiti, A.; Brito, J. L. Phase transformations and electronic properties in mixed-metal oxides: Experimental and theoretical studies on the behavior of NiMoO4 and MgMoO4. J. Chem. Phys. 2000, 112, 935–945.

    Article  CAS  Google Scholar 

  285. An, L.; Feng, J. R.; Zhang, Y.; Wang, R.; Liu, H. W.; Wang, G. C.; Cheng, F. Y.; Xi, P. X. Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv. Funct. Mater. 2019, 29, 1805298.

    Article  Google Scholar 

  286. Wang, Y. Q.; Zhao, L.; Sui, X. L.; Gu, D. M.; Wang, Z. B. Hierarchical CoP3/NiMoO4 heterostructures on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Ceram. Int. 2019, 45, 17128–17136.

    Article  CAS  Google Scholar 

  287. Li, Y. K.; Zhang, G.; Lu, W. T.; Cao, F. F. Amorphous Ni-Fe-Mo suboxides coupled with Ni network as porous nanoplate array on nickel foam: A highly efficient and durable bifunctional electrode for overall water splitting. Adv. Sci. 2020, 7, 1902034.

    Article  CAS  Google Scholar 

  288. Ahmed, J.; Alam, M.; Khan, M. A. M.; Alshehri, S. M. Bifunctional electro-catalytic performances of NiMoO4-NRs@RGO nanocomposites for oxygen evolution and oxygen reduction reactions. J. King Saud Univ. -Sci. 2021, 33, 101317.

    Article  Google Scholar 

  289. Wang, Z. J.; Jin, C.; Sui, J.; Li, C.; Yang, R. Z. Phosphorus-doped SrCo0.5Mo0.5O3 perovskites with enhanced bifunctional oxygen catalytic activities. Int. J. Hydrogen Energy 2018, 43, 20727–20733.

    Article  CAS  Google Scholar 

  290. Muñoz-García, A. B.; Pavone, M. K-doped Sr2Fe1.5Mo0.5O6−δ predicted as a bifunctional catalyst for air electrodes in proton-conducting solid oxide electrochemical cells. J. Mater. Chem. A 2017, 5, 12735–12739.

    Article  Google Scholar 

  291. Liu, Q.; Dong, X. H.; Xiao, G. L.; Zhao, F.; Chen, F. L. A novel electrode material for symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482.

    Article  CAS  Google Scholar 

  292. Liu, Q.; Xiao, G. L.; Howell, T.; Reitz, T. L.; Chen, F. L. A novel redox stable catalytically active electrode for solid oxide fuel cells. ECS Trans. 2011, 35, 1357–1366.

    Article  CAS  Google Scholar 

  293. Muñoz-García, A. B.; Bugaris, D. E.; Pavone, M.; Hodges, J. P.; Huq, A.; Chen, F. L.; zur Loye, H. C.; Carter, E. A. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6−δ, an electrode material for symmetric solid oxide fuel cells. J. Am. Chem. Soc. 2012, 134, 6826–6833.

    Article  Google Scholar 

  294. Song, Y.; Zhong, Q.; Tan, W. Y.; Pan, C. Effect of cobalt-substitution Sr2Fe1.5−xCoxMo0.5O6−δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochim. Acta 2014, 139, 13–20.

    Article  CAS  Google Scholar 

  295. Khan, R.; Mehran, M. T.; Naqvi, S. R.; Khoja, A. H.; Mahmood, K.; Shahzad, F.; Hussain, S. Role of perovskites as a bi-functional catalyst for electrochemical water splitting: A review. Int. J. Energy Res. 2020, 44, 9714–9747.

    Article  CAS  Google Scholar 

  296. Wang, H. Z.; Zhou, M.; Choudhury, P.; Luo, H. M. Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions—A mini review. Appl. Mater. Today 2019, 16, 56–71.

    Article  CAS  Google Scholar 

  297. Lu, Z. Y.; Qian, L.; Tian, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2011, 52, 908–911.

    Article  Google Scholar 

  298. Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

    Article  Google Scholar 

  299. Zhou, D. J.; Cai, Z.; Lei, X. D.; Tian, W. L.; Bi, Y. M.; Jia, Y.; Han, N. N.; Gao, T. F.; Zhang, Q.; Kuang, Y. et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.

    Article  Google Scholar 

  300. Jeghan, S. M. N.; Kim, J.; Lee, G. Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Appl. Surf. Sci. 2021, 546, 149072.

    Article  CAS  Google Scholar 

  301. Bao, J.; Wang, Z. L.; Xie, J. F.; Xu, L.; Lei, F. C.; Guan, M. L.; Zhao, Y.; Huang, Y. P.; Li, H. M. A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2019, 55, 3521–3524.

    Article  CAS  Google Scholar 

  302. Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.

    Article  CAS  Google Scholar 

  303. Dong, S. M.; Chen, X.; Zhang, X. Y.; Cui, G. L. Nanostructured transition metal nitrides for energy storage and fuel cells. Coord. Chem. Rev. 2013, 257, 1946–1956.

    Article  CAS  Google Scholar 

  304. Chen, J. G. Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities. Chem. Rev. 1996, 96, 1477–1498.

    Article  CAS  Google Scholar 

  305. Choi, J. G.; Brenner, J. R.; Colling, C. W.; Demczyk, B. G.; Dunning, J. L.; Thompson, L. T. Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts. Catal. Today 1992, 15, 201–222.

    Article  CAS  Google Scholar 

  306. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.

    Article  CAS  Google Scholar 

  307. Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

    Article  CAS  Google Scholar 

  308. Jin, H. Y.; Gu, Q. F.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Z. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020, 6, 2382–2394.

    Article  CAS  Google Scholar 

  309. Yin, Z. X.; Sun, Y.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Bimetallic Ni-Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2017, 5, 13648–13658.

    Article  CAS  Google Scholar 

  310. Kreider, M. E.; Stevens, M. B.; Liu, Y. Z.; Patel, A. M.; Statt, M. J.; Gibbons, B. M.; Gallo, A.; Ben-Naim, M.; Mehta, A.; Davis, R. C. et al. Nitride or oxynitride? Elucidating the composition—activity relationships in molybdenum nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 2020, 32, 2946–2960.

    Article  CAS  Google Scholar 

  311. Chen, W. F.; Iyer, S.; Iyer, S.; Sasaki, K.; Wang, C. H.; Zhu, Y. M.; Muckerman, J. T.; Fujita, E. Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ. Sci. 2011, 6, 1818–1826.

    Article  Google Scholar 

  312. Xie, J. F.; Xie, Y. Transition metal nitrides for electrocatalytic energy conversion: Opportunities and challenges. Chem.—Eur. J. 2011, 22, 3588–3598.

    Article  Google Scholar 

  313. Xie, J. F.; Li, S.; Zhang, X. D.; Zhang, J. J.; Wang, R. X.; Zhang, H.; Pan, B. C.; Xie, Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615–4620.

    Article  CAS  Google Scholar 

  314. Xiong, J.; Cai, W. W.; Shi, W. J.; Zhang, X. L.; Li, J.; Yang, Z. H.; Feng, L. G.; Cheng, H. S. Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 24193–24198.

    Article  CAS  Google Scholar 

  315. Shi, X.; Wu, A. P.; Yan, H. J.; Zhang, L.; Tian, C. G.; Wang, L.; Fu, H. G. A “MOFs plus MOFs” strategy toward Co-Mo2N tubes for efficient electrocatalytic overall water splitting. J. Mater. Chem. A 2018, 6, 20100–20109.

    Article  CAS  Google Scholar 

  316. Jia, J. R.; Zhai, M. K.; Lv, J. J.; Zhao, B. X.; Du, H. B.; Zhu, J. J. Nickel molybdenum nitride nanorods grown on Ni foam as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 30400–30408.

    Article  CAS  Google Scholar 

  317. Wang, P.; Qi, J.; Li, C.; Chen, X.; Wang, T. H.; Liang, C. H. N-doped carbon nanotubes encapsulating Ni/MoN heterostructures grown on carbon cloth for overall water splitting. ChemElectroChem 2020, 7, 745–752.

    Article  CAS  Google Scholar 

  318. Zhan, Y. F.; Xie, F. Y.; Zhang, H.; Lin, Z. P.; Huang, J. L.; Zhang, W. H.; Sun, X. L.; Meng, H.; Zhang, Y. L.; Chen, J. Metallic Ni promoted Mo2C-MoN particles supported on N-doped graphitic carbon as bifunctional catalyst for oxygen and hydrogen evolution reaction in alkaline media. J. Electrochem. Soc. 2018, 165, F75–F81.

    Article  CAS  Google Scholar 

  319. Sun, Y.; Zhou, Y. L.; Zhu, Y. P.; Shen, Y. H.; Xie, A. J. In-situ synthesis of petal-like MoO2@MoN/NF heterojunction as both an advanced binder-free anode and an electrocatalyst for lithium ion batteries and water splitting. ACS Sustain Chem. Eng. 2019, 7, 9153–9163.

    Article  CAS  Google Scholar 

  320. Kou, Z. K.; Wang, T. T.; Gu, Q. L.; Xiong, M.; Zheng, L. R.; Li, X.; Pan, Z. H.; Chen, H.; Verpoort, F.; Cheetham, A. K. et al. Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 2019, 9, 1803768.

    Article  Google Scholar 

  321. Lu, Y. K.; Li, Z. X.; Xu, Y. L.; Tang, L. Q.; Xu, S. J.; Li, D.; Zhu, J. J.; Jiang, D. L. Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 411, 128433.

    Article  CAS  Google Scholar 

  322. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  CAS  Google Scholar 

  323. Yin, Z. X.; Sun, Y.; Jiang, Y. J.; Yan, F.; Zhu, C. L.; Chen, Y. J. Hierarchical cobalt-doped molybdenum-nickel nitride nanowires as multifunctional electrocatalysts. ACS Appl. Mater. Interfaces 2019, 11, 27751–27759.

    Article  CAS  Google Scholar 

  324. Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

    Article  CAS  Google Scholar 

  325. Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2011, 113, 7981–8065.

    Article  Google Scholar 

  326. Prins, R.; Bussell, M. E. Metal phosphides: Preparation, characterization and catalytic reactivity. Catal. Lett. 2012, 142, 1413–1436.

    Article  CAS  Google Scholar 

  327. Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702–5707.

    Article  CAS  Google Scholar 

  328. McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 2014, 26, 4826–4831.

    Article  CAS  Google Scholar 

  329. Xiao, W. P.; Zhang, L.; Bukhvalov, D.; Chen, Z. P.; Zou, Z. Y.; Shang, L.; Yang, X. F.; Yan, D. Q.; Han, F. Y.; Zhang, T. R. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy 2020, 70, 104445.

    Article  CAS  Google Scholar 

  330. Zhang, L.; Xiao, W. P.; Zhang, Y.; Han, F. Y.; Yang, X. F. Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction. Compos. Commun. 2021, 26, 100792.

    Article  Google Scholar 

  331. Wang, X. D.; Chen, H. Y.; Xu, Y. F.; Liao, J. F.; Chen, B. X.; Rao, H. S.; Kuang, D. B.; Su, C. Y. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. J. Mater. Chem. A 2017, 5, 7191–7199.

    Article  CAS  Google Scholar 

  332. Xu, H.; Wei, J. J.; Zhang, K.; Shiraishi, Y.; Du, Y. K. Hierarchical NiMo phosphide nanosheets strongly anchored on carbon nanotubes as robust electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 29647–29655.

    Article  CAS  Google Scholar 

  333. Nguyen, D. C.; Tran, D. T.; Luyen Doan, T. L.; Kim, N. H.; Lee, J. H. Constructing MoPx@MnPy heteronanopaprticle-supported mesoporous N, P-codoped graphene for boosting oxygen reduction and oxygen evolution reaction. Chem. Mater. 2019, 31, 2892–2904.

    Article  CAS  Google Scholar 

  334. Singh, D.; Mamtani, K.; Bruening, C. R.; Miller, J. T.; Ozkan, U. S. Use of H2S to probe the active sites in FeNC catalysts for the oxygen reduction reaction (ORR) in acidic media. ACS Catal. 2014, 4, 3454–3462.

    Article  CAS  Google Scholar 

  335. Ren, B. W.; Li, D. Q.; Jin, Q. Y.; Cui, H.; Wang, C. X. Integrated 3D self-supported Ni decorated MoO2 nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution. J. Mater. Chem. A 2017, 5, 24453–24461.

    Article  CAS  Google Scholar 

  336. Govind Rajan, A.; Martirez, J. M. P.; Carter, E. A. Facet-independent oxygen evolution activity of pure β-NiOOH: Different chemistries leading to similar overpotentials. J. Am. Chem. Soc. 2020, 142, 3600–3612.

    Article  CAS  Google Scholar 

  337. Zhao, S. N.; Huang, J. F.; Liu, Y. Y.; Shen, J. H.; Wang, H.; Yang, X. L.; Zhu, Y. H.; Li, C. Z. Multimetallic Ni-Mo/Cu nanowires as nonprecious and efficient full water splitting catalyst. J. Mater. Chem. A 2017, 5, 4207–4214.

    Article  CAS  Google Scholar 

  338. Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Sun, X. P.; He, Y. Q.; Asiri, A. M. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 2015, 3, 20056–20059.

    Article  CAS  Google Scholar 

  339. Qin, F.; Zhao, Z. H.; Alam, K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.

    Article  CAS  Google Scholar 

  340. Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

    Article  CAS  Google Scholar 

  341. Hu, K. L.; Wu, M. X.; Hinokuma, S.; Ohto, T.; Wakisaka, M.; Fujita, J. I.; Ito, Y. Boosting electrochemical water splitting via ternary NiMoCo hybrid nanowire arrays. J. Mater. Chem. A 2019, 7, 2156–2164.

    Article  CAS  Google Scholar 

  342. Wang, C. L.; Wang, D. D.; Liu, S.; Jiang, P.; Lin, Z. Y.; Xu, P. P.; Yang, K.; Lu, J.; Tong, H. G.; Hu, L. et al. Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction. J. Catal. 2020, 389, 150–156.

    Article  CAS  Google Scholar 

  343. Gao, J.; Zou, J. X.; Zeng, X. Q.; Ding, W. J. Carbon supported nano Pt-Mo alloy catalysts for oxygen reduction in magnesium-air batteries. RSC Adv. 2011, 6, 83025–83030.

    Article  Google Scholar 

  344. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    Article  CAS  Google Scholar 

  345. Jin, Z. Y.; Lv, J.; Jia, H. L.; Liu, W. H.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Sun, S. H. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

    Article  CAS  Google Scholar 

  346. Li, S. Y.; Wang, J. Q.; Lin, X.; Xie, G. Q.; Huang, Y.; Liu, X. J.; Qiu, H. J. Flexible solid-state direct ethanol fuel cell catalyzed by nanoporous high-entropy Al-Pd-Ni-Cu-Mo anode and spinel (AlMnCo)3O4 cathode. Adv. Funct. Mater. 2021, 31, 2007129.

    Article  CAS  Google Scholar 

  347. Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 2019, 1, 526–533.

    Article  CAS  Google Scholar 

  348. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

    Article  CAS  Google Scholar 

  349. Huang, P. C.; Cheng, M.; Zhang, H. H.; Zuo, M.; Xiao, C.; Xie, Y. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy 2019, 61, 428–434.

    Article  CAS  Google Scholar 

  350. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

    Article  CAS  Google Scholar 

  351. Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

    Article  CAS  Google Scholar 

  352. Du, P.; Hu, K. L.; Lyu, J.; Li, H. L.; Lin, X.; Xie, G. Q.; Liu, X. J.; Ito, Y.; Qiu, H. J. Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Zn-air batteries. Appl. Catal. B: Environ. 2020, 276, 119172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (No. 864234) and from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — EXC 2089/1 — 390776260. S. S. acknowledges financial support from the Alexander von Humboldt Foundation.

Funding

Funding note: Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. Saswati Santra and Verena Streibel contributed equally to this work.

Authors and Affiliations

  1. Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748, Garching, Germany

    Saswati Santra, Verena Streibel & Ian D. Sharp

Authors
  1. Saswati Santra
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Verena Streibel
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ian D. Sharp
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ian D. Sharp.

Electronic Supplementary Material

Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santra, S., Streibel, V. & Sharp, I.D. Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion. Nano Res. 15, 10234–10267 (2022). https://doi.org/10.1007/s12274-022-5022-y

Download citation

  • Received: 16 June 2022

  • Revised: 16 August 2022

  • Accepted: 05 September 2022

  • Published: 22 October 2022

  • Issue Date: December 2022

  • DOI: https://doi.org/10.1007/s12274-022-5022-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • molybdenum-based electrocatalysts
  • bifunctional electrocatalysts
  • hydrogen evolution reaction
  • oxygen reduction reaction
  • oxygen evolution reaction
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.