Skip to main content
Log in

Chirality-dependent concentration boundaries of single-wall carbon nanotubes for photoluminescence characterization and applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Increasing the concentration of single-wall carbon nanotubes (SWCNTs) is an effective method for enhancing their luminescence intensity. However, an increase in the concentration of SWCNTs would inevitably increase their reabsorption effect, degrading their luminescence efficiency. Herein, we systematically investigated variations in the photoluminescence (PL) intensity of (6,5) single-chirality SWCNTs while increasing their concentration. The results show that the PL intensity first increased to a maximum and then decreased with increasing concentration. Numerical analysis indicates that the concentration boundary corresponding to the maximum PL intensity was strongly dependent on the ratio of the optical absorbances of the SWCNTs at their excitation and emission wavelengths. According to this, statistical analysis by experimentally measuring the optical absorption spectra of 18 kinds of single-chirality SWCNTs shows that the concentration boundaries of SWCNTs were dependent upon their Types and diameters. The concentration boundary of Type I SWCNTs was higher than that of Type II SWCNTs, and the concentration boundaries of both Types increased with increasing diameter. These results provide important guidance for spectral characterization and applications in bioimaging and photoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.

    Article  CAS  Google Scholar 

  2. Cherukuri, T. K.; Tsyboulski, D. A.; Weisman, R. B. Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. ACS Nano 2012, 6, 843–850.

    Article  CAS  Google Scholar 

  3. Ghosh, S.; Bachilo, S. M.; Simonette, R. A.; Beckingham, K. M.; Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 2010, 330, 1656–1659.

    Article  CAS  Google Scholar 

  4. Dowgiallo, A. M.; Mistry, K. S.; Johnson, J. C.; Blackburn, J. L. Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60. ACS Nano 2014, 8, 8573–8581.

    Article  CAS  Google Scholar 

  5. Zheng, Y.; Alizadehmojarad, A. A.; Bachilo, S. M.; Kolomeisky, A. B.; Weisman, R. B. Dye quenching of carbon nanotube fluorescence reveals structure-selective coating coverage. ACS Nano 2020, 14, 12148–12158.

    Article  CAS  Google Scholar 

  6. Ma, X. D.; Cambré, S.; Wenseleers, W.; Doorn, S. K.; Htoon, H. Quasiphase transition in a single file of water molecules encapsulated in (6, 5) carbon nanotubes observed by temperature-dependent photoluminescence spectroscopy. Phys. Rev. Lett. 2017, 118, 027402.

    Article  Google Scholar 

  7. Liu, X. J.; Kuzmany, H.; Ayala, P.; Calvaresi, M.; Zerbetto, F.; Pichler, T. Selective enhancement of photoluminescence in filled single-walled carbon nanotubes. Adv. Funct. Mater. 2012, 22, 3202–3208.

    Article  CAS  Google Scholar 

  8. Cambré, S.; Santos, S. M.; Wenseleers, W.; Nugraha, A. R. T.; Saito, R.; Cognet, L.; Lounis, B. Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. ACS Nano 2012, 6, 2649–2655.

    Article  Google Scholar 

  9. Rohringer, P.; Shi, L.; Ayala, P.; Pichler, T. Selective enhancement of inner tube photoluminescence in filled double-walled carbon nanotubes. Adv. Funct. Mater. 2016, 26, 4874–4881.

    Article  CAS  Google Scholar 

  10. Heeg, S.; Shi, L.; Poulikakos, L. V.; Pichler, T.; Novotny, L. Carbon nanotube chirality determines properties of encapsulated linear carbon chain. Nano Lett. 2018, 18, 5426–5431.

    Article  CAS  Google Scholar 

  11. Chen, M. T.; Gomez, L. M.; Ishikawa, F. N.; Vernier, P. T.; Zhou, C.; Gundersen, M. A. pH-sensitive intracellular photoluminescence of carbon nanotube-fluorescein conjugates in human ovarian cancer cells. Nanotechnology 2009, 20, 295101.

    Article  CAS  Google Scholar 

  12. Berger, S.; Voisin, C.; Cassabois, G.; Delalande, C.; Roussignol, P.; Marie, X. Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes. Nano Lett. 2007, 7, 398–402.

    Article  CAS  Google Scholar 

  13. Peng, L. M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442.

    Article  CAS  Google Scholar 

  14. Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, e1800750.

    Article  Google Scholar 

  15. Koo, J. H.; Song, J. K.; Kim, D. H. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 2019, 30, 132001.

    Article  CAS  Google Scholar 

  16. Sarti, F.; Biccari, F.; Fioravanti, F.; Torrini, U.; Vinattieri, A.; Derycke, V.; Gurioli, M.; Filoramo, A. Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths. Nano Res. 2016, 9, 2478–2486.

    Article  CAS  Google Scholar 

  17. Harvey, J. D.; Williams, R. M.; Tully, K. M.; Baker, H. A.; Shamay, Y.; Heller, D. A. An in vivo nanosensor measures compartmental doxorubicin exposure. Nano Lett. 2019, 19, 4343–4354.

    Article  CAS  Google Scholar 

  18. Yomogida, Y.; Tanaka, T.; Zhang, M. F.; Yudasaka, M.; Wei, X. J.; Kataura, H. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat. Commun. 2016, 7, 12056.

    Article  CAS  Google Scholar 

  19. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 µm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

    Article  CAS  Google Scholar 

  20. Jain, A.; Homayoun, A.; Bannister, C. W.; Yum, K. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine. Biotechnol. J. 2015, 10, 447–459.

    Article  CAS  Google Scholar 

  21. Yu, D. M.; Liu, H. P.; Peng, L. M.; Wang, S. Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films. ACS Appl. Mater. Interfaces 2015, 7, 3462–3467.

    Article  CAS  Google Scholar 

  22. Zorn, N. F.; Berger, F. J.; Zaumseil, J. Charge transport in and electroluminescence from sp3-functionalized carbon nanotube networks. ACS Nano 2021, 15, 10451–10463.

    Article  CAS  Google Scholar 

  23. Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 115426.

    Article  Google Scholar 

  24. Powell, L. R.; Piao, Y.; Ng, A. L.; Wang, Y. H. Channeling excitons to emissive defect sites in carbon nanotube semiconductors beyond the dilute regime. J. Phys. Chem. Lett. 2018, 9, 2803–2807.

    Article  CAS  Google Scholar 

  25. Wei, X. J.; Tanaka, T.; Li, S. L.; Tsuzuki, M.; Wang, G. W.; Yao, Z. H.; Li, L. H.; Yomogida, Y.; Hirano, A.; Liu, H. P. et al. Photoluminescence quantum yield of single-wall carbon nanotubes corrected for the photon reabsorption effect. Nano Lett. 2020, 20, 410–417.

    Article  CAS  Google Scholar 

  26. Li, S. L.; Yang, D. H.; Cui, J. M.; Wang, Y. C.; Wei, X. J.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Quantitative analysis of the intertube coupling effect on the photoluminescence characteristics of distinct (n,m) carbon nanotubes dispersed in solution. Nano Res. 2020, 13, 1149–1155.

    Article  CAS  Google Scholar 

  27. Tan, P. H.; Rozhin, A. G.; Hasan, T.; Hu, P.; Scardaci, V.; Milne, W. I.; Ferrari, A. C. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 2007, 99, 137402.

    Article  CAS  Google Scholar 

  28. Mehlenbacher, R. D.; McDonough, T. J.; Grechko, M.; Wu, M. Y.; Arnold, M. S.; Zanni, M. T. Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy. Nat. Commun. 2015, 6, 6732.

    Article  CAS  Google Scholar 

  29. Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 2010, 5, 443–450.

    Article  CAS  Google Scholar 

  30. Green, A. A.; Duch, M. C.; Hersam, M. C. Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res. 2009, 2, 69–77.

    Article  CAS  Google Scholar 

  31. Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

    Article  Google Scholar 

  32. Wei, X. J.; Tanaka, T.; Yomogida, Y.; Sato, N.; Saito, R.; Kataura, H. Experimental determination of excitonic band structures of singlewalled carbon nanotubes using circular dichroism spectra. Nat. Commun. 2016, 7, 12899.

    Article  CAS  Google Scholar 

  33. Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S. Separation of small-diameter single-walled carbon nanotubes in one to three steps with aqueous two-phase extraction. ACS Nano 2019, 13, 2567–2578.

    CAS  Google Scholar 

  34. Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M. Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater. 2014, 26, 2800–2804.

    Article  CAS  Google Scholar 

  35. Wei, X. J.; Tanaka, T.; Hirakawa, T.; Tsuzuki, M.; Wang, G. W.; Yomogida, Y.; Hirano, A.; Kataura, H. High-yield and high-throughput single-chirality enantiomer separation of single-wall carbon nanotubes. Carbon 2018, 132, 1–7.

    Article  CAS  Google Scholar 

  36. Yang, D. H.; Li, L. H.; Wei, X. J.; Wang, Y. C.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.

    Article  CAS  Google Scholar 

  37. Chou, S. G.; Plentz, F.; Jiang, J.; Saito, R.; Nezich, D.; Ribeiro, H. B.; Jorio, A.; Pimenta, M. A.; Samsonidze, G. G.; Santos, A. P. et al. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys. Rev. Lett. 2005, 94, 127402.

    Article  CAS  Google Scholar 

  38. Mäntele, W.; Deniz, E. UV-vis absorption spectroscopy:Lambert-beer reloaded. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 965–968.

    Article  Google Scholar 

  39. De Nicola, F.; Pintossi, C.; Nanni, F.; Cacciotti, I.; Scarselli, M.; Drera, G.; Pagliara, S.; Sangaletti, L.; De Crescenzi, M.; Castrucci, P. Controlling the thickness of carbon nanotube random network films by the estimation of the absorption coefficient. Carbon 2015, 95, 28–33.

    Article  CAS  Google Scholar 

  40. Li, S. L.; Wei, X. J.; Li, L. H.; Cui, J. M.; Yang, D. H.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S.; Hirano, A.; Tanaka, T. et al. Quantitative analysis of the effect of reabsorption on the Raman spectroscopy of distinct (n,m) carbon nanotubes. Anal. Methods 2020, 12, 2376–2384.

    Article  CAS  Google Scholar 

  41. Streit, J. K.; Bachilo, S. M.; Ghosh, S.; Lin, C. W.; Weisman, R. B. Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. Nano Lett. 2014, 14, 1530–1536.

    Article  CAS  Google Scholar 

  42. Yomogida, Y.; Tanaka, T.; Tsuzuki, M.; Wei, X. J.; Kataura, H. Automatic sorting of single-chirality single-wall carbon nanotubes using hydrophobic cholates: Implications for multicolor near-infrared optical technologies. ACS Appl. Nano Mater. 2020, 3, 11289–11297.

    Article  CAS  Google Scholar 

  43. Wei, X. J.; Tanaka, T.; Akizuki, N.; Miyauchi, Y.; Matsuda, K.; Ohfuchi, M.; Kataura, H. Single-chirality separation and optical properties of (5, 4) single-wall carbon nanotubes. J. Phys. Chem. C 2016, 120, 10705–10710.

    Article  CAS  Google Scholar 

  44. Choi, S.; Deslippe, J.; Capaz, R. B.; Louie, S. G. An explicit formula for optical oscillator strength of excitons in semiconducting singlewalled carbon nanotubes: Family behavior. Nano Lett. 2013, 13, 54–58.

    Article  CAS  Google Scholar 

  45. Malić, E.; Hirtschulz, M.; Milde, F.; Knorr, A.; Reich, S. Analytical approach to optical absorption in carbon nanotubes. Phys. Rev. B 2006, 74, 195431.

    Article  Google Scholar 

  46. Oyama, Y.; Saito, R.; Sato, K.; Jiang, J.; Samsonidze, G. G.; Grüneis, A.; Miyauchi, Y.; Maruyama, S.; Jorio, A.; Dresselhaus, G. et al. Photoluminescence intensity of single-wall carbon nanotubes. Carbon 2006, 44, 873–879.

    Article  CAS  Google Scholar 

  47. Samsonidze, G. G.; Saito, R.; Jorio, A.; Filho, A. G. S.; Grüneis, A.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phonon trigonal warping effect in graphite and carbon nanotubes. Phys. Rev. Lett. 2003, 90, 027403.

    Article  Google Scholar 

  48. Ohno, Y.; Iwasaki, S.; Murakami, Y.; Kishimoto, S.; Maruyama, S.; Mizutani, T. Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Phys. Rev. B 2006, 73, 235427.

    Article  Google Scholar 

  49. Hirana, Y.; Tanaka, Y.; Niidome, Y.; Nakashima, N. Strong micro-dielectric environment effect on the band gaps of (n,m) single-walled carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 13072–13077.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2020YFA0714700 and 2018YFA0208402), the National Natural Science Foundation of China (Nos. 51820105002, 11634014, 51872320, and 52172060), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB33030100), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDBSSW-SYS028), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2020005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Wei or Huaping Liu.

Electronic Supplementary Material

12274_2022_4959_MOESM1_ESM.pdf

Chirality-dependent concentration boundaries of single-wall carbon nanotubes for photoluminescence characterization and applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, L., Wei, X. et al. Chirality-dependent concentration boundaries of single-wall carbon nanotubes for photoluminescence characterization and applications. Nano Res. 16, 1820–1825 (2023). https://doi.org/10.1007/s12274-022-4959-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4959-1

Keywords

Navigation