Skip to main content
Log in

Quantitative analysis of the intertube coupling effect on the photoluminescence characteristics of distinct (n, m) carbon nanotubes dispersed in solution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, we quantitatively studied the intertube coupling of different (n, m)-sorted semiconducting single-wall carbon nanotubes (SWCNTs) on their photoluminescence (PL) efficiencies by precisely tuning the ratio of (9, 4) and (6, 5) SWCNTs in the mixture. A significant decrease in the PL intensity of (9, 4) SWCNTs was observed after mixing with (6, 5) species when fixing the (9, 4) concentration, which was confirmed to be caused by the absorption of incident photons and reabsorption of the emitted photons by the added (6, 5) species. By contrast, a similar decrease in the PL intensity of (6, 5) SWCNTs was also observed after mixing with the larger-diameter (9, 4) species. Different from that of (9, 4) SWCNTs, the PL decrease of (6, 5) SWCNTs was found to originate not only from photon absorption and reabsorption by the (9, 4) species but also from one-way exciton energy transfer (EET) from the (6, 5) SWCNTs to the larger-diameter (9, 4) SWCNTs. Both the experimental results and numerical simulations further demonstrated that increasing the concentration of mixed (9, 4) SWCNTs would enhance the effects of photon absorption and reabsorption and EET on the PL intensity of (6, 5) SWCNTs quantified by the decrease ratio of the (6, 5) PL intensity. Meanwhile, the influence of EET was found to be always weaker than that of photon absorption and reabsorption. We proposed that the observed EET between isolated SWCNTs in a surfactant solution is derived from their proximity due to Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science2002, 297, 593–596.

    Google Scholar 

  2. Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science2002, 298, 2361–2366.

    CAS  Google Scholar 

  3. Lefebvre, J.; Austing, D. G.; Bond, J.; Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett.2006, 6, 1603–1608.

    CAS  Google Scholar 

  4. Kiowski, O.; Arnold, K.; Lebedkin, S.; Hennrich, F.; Kappes, M. M. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes. Phys. Rev. Lett.2007, 99, 237402.

    Google Scholar 

  5. Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M. et al. Toward single-chirality carbon nanotube device arrays. ACS Nano2010, 4, 2748–2754.

    CAS  Google Scholar 

  6. Jakubka, F.; Grimm, S. B.; Zakharko, Y.; Gannott, F.; Zaumseil, J. Trion electroluminescence from semiconducting carbon nanotubes. ACS Nano2014, 8, 8477–8486.

    CAS  Google Scholar 

  7. Wildöer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature1998, 391, 59–62.

    Google Scholar 

  8. Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B2005, 71, 115426.

    Google Scholar 

  9. Luo, Z. T.; Pfefferle, L. D.; Haller, G. L.; Papadimitrakopoulos, F. (n, m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy. J. Am. Chem. Soc.2006, 128, 15511–15516.

    CAS  Google Scholar 

  10. Li, X. L.; Tu, X. M.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. J. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc.2007, 129, 15770–15771.

    CAS  Google Scholar 

  11. Okazaki, T.; Saito, T.; Matsuura, K.; Ohshima, S.; Yumura, M.; Oyama, Y.; Saito, R.; Iijima, S. Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chem. Phys. Lett.2006, 420, 286–290.

    CAS  Google Scholar 

  12. Sarti, F.; Biccari, F.; Fioravanti, F.; Torrini, U.; Vinattieri, A.; Derycke, V.; Gurioli, M.; Filoramo, A. Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths. Nano Res.2016, 9, 2478–2486.

    CAS  Google Scholar 

  13. Jorio, A.; Fantini, C.; Pimenta, M. A.; Heller, D. A.; Strano, M. S.; Dresselhaus, M. S.; Oyama, Y.; Jiang, J.; Saito, R. Carbon nanotube population analysis from Raman and photoluminescence intensities. Appl. Phys. Lett.2006, 88, 023109.

    Google Scholar 

  14. Tsyboulski, D. A.; Rocha, J. D. R.; Bachilo, S. M.; Cognet, L.; Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett.2007, 7, 3080–3085.

    CAS  Google Scholar 

  15. Ju, S. Y.; Doll, J.; Sharma, I.; Papadimitrakopoulos, F. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat. Nanotechnol.2008, 3, 356–362.

    CAS  Google Scholar 

  16. Wei, X. J.; Tanaka, T.; Li, S. L.; Tsuzuki, M.; Wang, G. W.; Yao, Z. H.; Li, L. H.; Yomogida, Y.; Hirano, A.; Liu, H. P. et al. Photoluminescence quantum yield of single-wall carbon nanotubes corrected for the photon reabsorption effect. Nano Lett.2020, 20, 410–417.

    CAS  Google Scholar 

  17. Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater.2005, 4, 86–92.

    CAS  Google Scholar 

  18. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res.2010, 3, 779–793.

    CAS  Google Scholar 

  19. Yomogida, Y.; Tanaka, T.; Zhang, M. F; Yudasaka, M.; Wei, X. J.; Kataura, H. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat. Commun.2016, 7, 12056.

    CAS  Google Scholar 

  20. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res.2009, 2, 85–120.

    CAS  Google Scholar 

  21. Ahn, T. S.; Al-Kaysi, R. O.; Müller, A. M.; Wentz, K. M.; Bardeen, C. J. Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements. Rev. Sci. Instrum.2007, 78, 086105.

    Google Scholar 

  22. Semonin, O. E.; Johnson, J. C.; Luther, J. M.; Midgett, A. G.; Nozik, A. J.; Beard, M. C. Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots. J. Phys. Chem. Lett.2010, 1, 2445–2450.

    CAS  Google Scholar 

  23. Zhang, N.; Dai, D. J.; Zhang, W. X.; Fan, J. Y. Photoluminescence and light reabsorption in SiC quantum dots embedded in binary-polyelectrolyte solid matrix. J. Appl. Phys.2012, 112, 094315.

    Google Scholar 

  24. Torrens, O. N.; Milkie, D. E.; Zheng, M.; Kikkawa, J. M. Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. Nano Lett.2006, 6, 2864–2867.

    CAS  Google Scholar 

  25. Tan, P. H.; Rozhin, A. G.; Hasan, T.; Hu, P.; Scardaci, V.; Milne, W. I.; Ferrari, A. C. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett.2007, 99, 137402.

    CAS  Google Scholar 

  26. Koyama, T.; Miyata, Y.; Asada, Y.; Shinohara, H.; Kataura, H.; Nakamura, A. Bright luminescence and exciton energy transfer in polymer-wrapped single-walled carbon nanotube bundles. J. Phys. Chem. Lett.2010, 1, 3243–3248.

    CAS  Google Scholar 

  27. Koyama, T.; Asaka, K.; Hikosaka, N.; Kishida, H.; Saito, Y.; Nakamura, A. Ultrafast exciton energy transfer in bundles of single-walled carbon nanotubes. J. Phys. Chem. Lett.2011, 2, 127–132.

    CAS  Google Scholar 

  28. Fantini, C.; Cassimiro, J.; Peressinotto, V. S. T.; Plentz, F.; Souza Filho, A. G.; Furtado, C. A.; Santos, A. P. Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants. Chem. Phys. Lett.2009, 473, 96–101.

    CAS  Google Scholar 

  29. Tanaka, T.; Jin, H. H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett.2009, 9, 1497–1500.

    CAS  Google Scholar 

  30. Liu, H. P.; Tanaka, T.; Urabe, Y.; Kataura, H. High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Lett.2013, 13, 1996–2003.

    CAS  Google Scholar 

  31. Liu, H. P; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun.2011, 2, 309.

    Google Scholar 

  32. Wei, X. J.; Tanaka, T.; Yomogida, Y.; Sato, N.; Saito, R.; Kataura, H. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat. Commun.2016, 7, 12899.

    CAS  Google Scholar 

  33. Zeng, X.; Yang, D. H.; Liu, H. P.; Zhou, N. G.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S.; Kataura, H. Detecting and tuning the interactions between surfactants and carbon nanotubes for their high-efficiency structure separation. Adv. Mater. Interfaces2018, 5, 1700727.

    Google Scholar 

  34. Green, A. A.; Duch, M. C.; Hersam, M. C. Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res.2009, 2, 69–77.

    CAS  Google Scholar 

  35. Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol.2010, 5, 443–450.

    CAS  Google Scholar 

  36. Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature2009, 460, 250–253.

    CAS  Google Scholar 

  37. Tu, X. M.; Zheng, M. A DNA-based approach to the carbon nanotube sorting problem. Nano Res.2008, 1, 185–194.

    CAS  Google Scholar 

  38. Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett.2003, 3, 1235–1238.

    CAS  Google Scholar 

  39. Wang, F.; Sfeir, M. Y.; Huang, L. M.; Huang, X. M. H.; Wu, Y.; Kim, J.; Hone, J.; O’Brien, S.; Brus, L. E.; Heinz, T. F. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett.2006, 96, 167401.

    Google Scholar 

  40. Chou, S. G.; Plentz, F.; Jiang, J.; Saito, R.; Nezich, D.; Ribeiro, H. B.; Jorio, A.; Pimenta, M. A.; Samsonidze, G. G.; Santos, A. P. et al. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys. Rev. Lett.2005, 94, 127402.

    CAS  Google Scholar 

  41. Mäntele, W.; Deniz, E. UV-Vis absorption spectroscopy: Lambert-beer reloaded. Spectrochim. Acta A Mol. Biomol. Spectrosc.2017, 173, 965–968.

    Google Scholar 

  42. Wei, X. J.; Tanaka, T.; Akizuki, N.; Miyauchi, Y.; Matsuda, K.; Ohfuchi, M.; Kataura, H. Single-chirality separation and optical properties of (5,4) single-wall carbon nanotubes. J. Phys. Chem. C2016, 120, 10705–10710.

    CAS  Google Scholar 

  43. Qian, H. H.; Georgi, C.; Anderson, N.; Green, A. A.; Hersam, M. C.; Novotny, L.; Hartschuh, A. Exciton energy transfer in pairs of single-walled carbon nanotubes. Nano Lett.2008, 8, 1363–1367.

    CAS  Google Scholar 

  44. Hernández-Martínez, P. L.; Govorov, A. O.; Demir, H. V. Generalized theory of Förster-type nonradiative energy transfer in nanostructures with mixed dimensionality. J. Phys. Chem. C2013, 117, 10203–10212.

    Google Scholar 

  45. Hernández-Martínez, P. L.; Govorov, A. O.; Demir, H. V. Förster-type nonradiative energy transfer for assemblies of arrayed nanostructures: Confinement dimension vs. stacking dimension. J. Phys. Chem. C2014, 118, 4951–4958.

    Google Scholar 

  46. Davoody, A. H.; Karimi, F.; Arnold, M. S.; Knezevic, I. Theory of exciton energy transfer in carbon nanotube composites. J. Phys. Chem. C2016, 120, 16354–16366.

    CAS  Google Scholar 

  47. Feitelson, J. Resonance transfer of electronic excitation energy in solution. I. influence of Brownian motion. J. Chem. Phys.1996, 44, 1497–1500.

    Google Scholar 

  48. Grechko, M.; Ye, Y. M.; Mehlenbacher, R. D.; McDonough, T. J.; Wu, M. Y.; Jacobberger, R. M.; Arnold, M. S.; Zanni, M. T. Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films. ACS Nano2014, 8, 5383–5394.

    CAS  Google Scholar 

  49. Olaya-Castro, A.; Scholes, G. D. Energy transfer from Förster-Dexter theory to quantum coherent light-harvesting. Int. Rev. Phys. Chem.2011, 30, 49–77.

    CAS  Google Scholar 

  50. Mehlenbacher, R. D.; McDonough, T. J.; Grechko, M.; Wu, M. Y.; Arnold, M. S.; Zanni, M. T. Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy. Nat. Commun.2015, 6, 6732.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key R&D Program of China (No. 2018YFA0208402), the National Natural Science Foundation of China (Nos. 51820105002, 11634014, and 51872320), the Youth Innovation Promotion Association of CAS (No. 2020005), and the Key Research Program of Frontier Sciences, CAS (No. QYZDBSSW-SYS028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Wei or Huaping Liu.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Material

12274_2020_2762_MOESM1_ESM.pdf

Quantitative analysis of the intertube coupling effect on the photoluminescence characteristics of distinct (n, m) carbon nanotubes dispersed in solution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yang, D., Cui, J. et al. Quantitative analysis of the intertube coupling effect on the photoluminescence characteristics of distinct (n, m) carbon nanotubes dispersed in solution. Nano Res. 13, 1149–1155 (2020). https://doi.org/10.1007/s12274-020-2762-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2762-4

Keywords

Navigation