Skip to main content
Log in

Control of crystal growth to obtain needle-shaped violet phosphorus with excellent photocatalytic degradation performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The control of crystal growth is important but challenging for multi-disciplinary research. Violet phosphorus, the most stable phosphorus allotrope, has recently been produced as a unique semiconducting layered structure. The crystal orientation and morphology bring extra performance due to its unique structure and anisotropy. Herein, the layered violet phosphorus has been controlled to grow along the c-axis to give tunable length up to centimeters with the assistance of tin, while the reported flat bulk ones with thickness are limited to micrometers. The as-produced needle-shaped violet phosphorus has also been demonstrated to significantly enhance the photocatalytic degradation of methyl orange pollutants due to its special crystallographic orientation. About 98.6% of methyl orange pollutants with a concentration of 50 ppm were degraded within 80 min under visible light conditions by needle-shaped violet phosphorus, which is much more effective than that of amorphous red phosphorus with only 14.1% degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, M.; Yang, W. H.; Wang, X. H.; Li, R. B.; Xu, Y. D.; Xu, J. Y. Growth and characterization of ZnTe single crystal via a novel Te flux vertical Bridgman method. Rare Met. 2021, 40, 858–864.

    Article  CAS  Google Scholar 

  2. Yu, P. F.; Jiang, B. R.; Chen, Y. R.; Lu, H. Y.; Qi, Y. W.; Liu, Y. P.; Ma, Z. F.; Zheng, J. H.; Luan, L. J.; Jie, W. Q. Growth and characterization of inclusion-free CdMgTe single crystals using modified Bridgman method. J. Mater. Sci. Mater. Electron. 2020, 31, 10207–10212.

    Article  CAS  Google Scholar 

  3. Ning, S. Y.; Yang, X. Y.; Wang, Y.; Zhu, Z. W.; Zhang, J. X. Single crystal growth of GdB6 by the optical floating-zone technique. CrystEngComm 2020, 22, 8236–8242.

    Article  CAS  Google Scholar 

  4. Fu, B.; Mu, W. X.; Zhang, J.; Wang, X. Q.; Zhuang, W. C.; Yin, Y. R.; Jia, Z. T.; Tao, X. T. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method. CrystEngComm 2020, 22, 5060–5066.

    Article  CAS  Google Scholar 

  5. Yin, Y. R.; Wang, G. J.; Jia, Z. T.; Mu, W. X.; Fu, X. W.; Zhang, J.; Tao, X. T. Controllable and directional growth of Er: Lu2O3 single crystals by the edge-defined film-fed technique. CrystEngComm 2020, 22, 6569–6573.

    Article  CAS  Google Scholar 

  6. Li, H.; Liu, J. K.; Guo, N.; Xiao, L.; Zhang, H. X.; Zhou, S. Y.; Wu, Y.; Fan, S. S. Seeded growth of high-quality transition metal dichalcogenide single crystals via chemical vapor transport. CrystEngComm 2020, 22, 8017–8022.

    Article  CAS  Google Scholar 

  7. Sutter, E.; Wang, J.; Sutter, P. Surface passivation by excess sulfur for controlled synthesis of large, thin SnS flakes. Chem. Mater. 2020, 32, 8034–8042.

    Article  CAS  Google Scholar 

  8. Wang, G. D.; Zhang, L.; Wang, Y.; Shao, Y. L.; Chen, C. M.; Liu, G. X.; Yao, X. G.; Wu, Y. Z.; Hao, X. P. Growth and stress analysis of spontaneous nucleation c-plane bulk AlN crystals by a PVT method. Cryst. Res. Technol. 2020, 55, 2000118.

    Article  CAS  Google Scholar 

  9. Wu, Z.; Liu, G. L.; Wang, Y. X.; Yang, X.; Wei, T. Q.; Wang, Q. J.; Liang, J.; Xu, N.; Li, Z. Z.; Zhu, B. et al. Seed-induced vertical growth of 2D Bi2O2Se nanoplates by chemical vapor transport. Adv. Funct. Mater. 2019, 29, 1906639.

    Article  CAS  Google Scholar 

  10. Quinson, J.; Bottein, T.; Dillon, F.; Meysami, S. S.; Grobert, N. Carbon nanotube columns for flow systems: Influence of synthesis parameters. Nanoscale Adv. 2020, 2, 5874–5882.

    Article  CAS  Google Scholar 

  11. Zhang, S.; Ma, S. F.; Hao, X. D.; Wang, Y. T.; Cao, B.; Han, B.; Zhang, H.; Kong, X. G.; Xu, B. S. Controllable preparation of crystalline red phosphorus and its photocatalytic properties. Nanoscale 2021, 13, 18955–18960.

    Article  CAS  Google Scholar 

  12. Zhang, L. H.; Gu, M. Y.; Li, L. R.; Zhao, X. W.; Fu, C. C.; Liu, T.; Xu, X. Q.; Cheng, Y. H.; Zhang, J. Y. High yield synthesis of violet phosphorus crystals. Chem. Mater. 2020, 32, 7363–7369.

    Article  CAS  Google Scholar 

  13. Zhang, B.; Wang, Z. Y.; Huang, H. Y.; Zhang, L. H.; Gu, M. Y.; Cheng, Y. H.; Wu, K.; Zhou, J.; Zhang, J. Y. Work function and band alignment of few-layer violet phosphorene. J. Mater. Chem. A 2020, 8, 8586–8592.

    Article  CAS  Google Scholar 

  14. Zhao, R. Z.; Liu, S. H.; Zhao, X. W.; Gu, M. Y.; Zhang, Y. H.; Jin, M. T.; Wang, Y. H.; Cheng, Y. H.; Zhang, J. Y. Violet phosphorus quantum dots. J. Mater. Chem. A 2021, 10, 245–250.

    Article  CAS  Google Scholar 

  15. Zhang, B.; Zhang, L. H.; Wang, Z. X.; Li, Y. F.; Cheng, Y. H.; Ma, L. F.; Zhang, J. Y. Cross structured two-dimensional violet phosphorene with extremely high deformation resistance. J. Mater. Chem. A 2021, 9, 13855–13860.

    Article  CAS  Google Scholar 

  16. Zhang, L. H.; Huang, H. Y.; Zhang, B.; Gu, M. Y.; Zhao, D.; Zhao, X. W.; Li, L. R.; Zhou, J.; Wu, K.; Cheng, Y. H. et al. Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem., Int. Ed. 2020, 59, 1074–1080.

    Article  CAS  Google Scholar 

  17. Zhang, L. H.; Li, X. B.; Yao, F. F.; Li, L. R.; Huang, H. Y.; Zhao, X. W.; Liu, S. H.; Cheng, Y. H.; Xu, H.; Zhang, J. Y. Fast identification of the crystallographic orientation of violet phosphorus nanoflakes with preferred in-plane cleavage edge orientation. Adv. Funct. Mater. 2022, 32, 2111057.

    Article  CAS  Google Scholar 

  18. Zhang, L. H.; Huang, H. Y.; Lv, Z. X.; Li, L. R.; Gu, M. Y.; Zhao, X. W.; Zhang, B.; Cheng, Y. H.; Zhang, J. Y. Phonon properties of bulk violet phosphorus single crystals: Temperature and pressure evolution. ACS Appl. Electron. Mater. 2021, 3, 1043–1049.

    Article  CAS  Google Scholar 

  19. Zhang, B.; Zhang, L. H.; Chen, C. X.; Gu, M. Y.; Cheng, Y. H.; Zhang, J. Y. Friction anisotropy of violet phosphorene and its surface structure direction identification. 2D Mater. 2022, 9, 025002.

    Article  Google Scholar 

  20. Zhu, Y. K.; Lv, C. X.; Yin, Z. C.; Ren, J.; Yang, X. F.; Dong, C. L.; Liu, H. W.; Cai, R. S.; Huang, Y. C.; Theis, W. et al. A [001]-oriented Hittorf’s phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem., Int. Ed. 2020, 59, 868–873.

    Article  CAS  Google Scholar 

  21. Liu, Y.; Hu, Z. F.; Yu, J. C. Liquid bismuth initiated growth of phosphorus microbelts with efficient charge polarization for photocatalysis. Appl. Catal. B: Environ. 2019, 247, 100–106.

    Article  CAS  Google Scholar 

  22. Wang, F.; Ng, W. K. H.; Yu, J. C.; Zhu, H. J.; Li, C. H.; Zhang, L.; Liu, Z. F.; Li, Q. Red phosphorus: An elemental photocatalyst for hydrogen formation from water. Appl. Catal. B: Environ. 2012, 111–112, 409–414.

    Article  Google Scholar 

  23. Thurn, H.; Krebs, H. Crystal structure of violet phosphorus. Angew. Chem., Int. Ed. 1966, 5, 1047–1048.

    Article  CAS  Google Scholar 

  24. Kim, S.; Hill, D. J.; Pinion, C. W.; Christesen, J. D.; McBride, J. R.; Cahoon, J. F. Designing morphology in epitaxial silicon nanowires: The role of gold, surface chemistry, and phosphorus doping. ACS Nano. 2017, 11, 4453–4462.

    Article  CAS  Google Scholar 

  25. Singh, S.; Kansal, S. K. Recent progress in red phosphorus-based photocatalysts for photocatalytic water remediation and hydrogen production. Appl. Mater. Today 2022, 26, 101345.

    Article  Google Scholar 

  26. Lin, S. H.; Lai, W. K.; Li, Y. Y.; Lu, W.; Bai, G. X.; Lau, S. P. Liquid-phase exfoliation of violet phosphorus for electronic applications. Smart Mat 2021, 2, 226–233.

    CAS  Google Scholar 

  27. Ricciardulli, A. G.; Wang, Y.; Yang, S.; Samori, P. Two-dimensional violet phosphorus: A p-type semiconductor for (opto)electronics. J. Am. Chem. Soc. 2022, 144, 3660–3666.

    Article  CAS  Google Scholar 

  28. Li, X. B.; Kang, B. B.; Dong, F.; Zhang, Z. Q.; Luo, X. D.; Han, L.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Xu, J. L. et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671.

    Article  CAS  Google Scholar 

  29. Li, X.; Xia, T.; Xu, C. H.; Murowchick, J.; Chen, X. B. Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal. Today 2014, 225, 64–73.

    Article  CAS  Google Scholar 

  30. Fung, C. M.; Er, C. C.; Tan, L. L.; Mohamed, A. R.; Chai, S. P. Red phosphorus: An up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem. Rev. 2022, 122, 3879–3965.

    Article  CAS  Google Scholar 

  31. Hockin, B. M.; Li, C. F.; Robertson, N.; Zysman-Colman, E. Photoredox catalysts based on earth-abundant metal complexes. Catal. Sci. Technol. 2019, 9, 889–915.

    Article  CAS  Google Scholar 

  32. Yang, X. F.; Cui, H. Y.; Li, Y.; Qin, J. L.; Zhang, R. X.; Tang, H. Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal. 2013, 3, 363–369.

    Article  CAS  Google Scholar 

  33. Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

    Article  CAS  Google Scholar 

  34. Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

    Article  CAS  Google Scholar 

  35. Ansari, S. A.; Ansari, M. S.; Cho, M. H. Metal free earth abundant elemental red phosphorus: A new class of visible light photocatalyst and photoelectrode materials. Phys. Chem. Chem. Phys. 2016, 18, 3921–3928.

    Article  CAS  Google Scholar 

  36. Shen, Z. R.; Hu, Z. F.; Wang, W. J.; Lee, S. F.; Chan, D. K. L.; Li, Y. C.; Gu, T.; Jimmy, C. Y. Crystalline phosphorus fibers: Controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale 2014, 6, 14163–14167.

    Article  CAS  Google Scholar 

  37. Ansari, S. A.; Cho, M. H. Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications. Sci. Rep. 2016, 6, 25405.

    Article  CAS  Google Scholar 

  38. Ansari, S. A.; Ansari, M. O.; Cho, M. H. Facile and scale up synthesis of red phosphorus-graphitic carbon nitride heterostructures for energy and environment applications. Sci. Rep. 2016, 6, 27713.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Li at Instrument Analysis Center of Xian Jiaotong University for their assistance with TEM. Financial support for this research is from the National Natural Science Foundation of China (No. 22175136). Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinying Zhang.

Electronic Supplementary Material

12274_2022_4952_MOESM1_ESM.pdf

Control of crystal growth to obtain needle-shaped violet phosphorus with excellent photocatalytic degradation performance

12274_2022_4952_MOESM2_ESM.pdf

Control of crystal growth to obtain needle-shaped violet phosphorus with excellent photocatalytic degradation performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Wang, Y., Gu, M. et al. Control of crystal growth to obtain needle-shaped violet phosphorus with excellent photocatalytic degradation performance. Nano Res. 16, 3320–3325 (2023). https://doi.org/10.1007/s12274-022-4952-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4952-8

Keywords

Navigation