Skip to main content
Log in

Low temperature one-pot synthesis of 1,1-diethoxyethane from ethanol on Bi/BiCeOx with strong metal-support interactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The direct conversion of ethanol to 1,1-diethoxyethane (DEE) through one-pot dehydrogenation-acetalization has attracted broad interest from both academia and industry. Based on thermodynamics, the oxidative dehydrogenation of alcohol to acetaldehyde requires high temperature to activate oxygen to realize the C−H cleavage, while the acetalization of acetaldehyde with ethanol is exothermic reversible reaction favorable at low temperature. The mismatching of the reaction condition for the two consecutive steps makes it a great challenge to achieve both high ethanol conversion and high DEE selectivity. This work reports a highly efficient bi-functional catalysis by Bi/BiCeOx for one-pot oxidative dehydrogenation-acetalization route from ethanol to DEE under 150 °C and ambient pressure, affording a selectivity of 98.5% ± 0.5% to DEE at an ethanol conversion of 87.0% ± 1.0%. An efficient tandem catalysis has been achieved on the interfacial Biδ+−Ov−CeIII sites in Bi/BiCeOx established by strong metal-support interaction, in which Biδ+−Ov- sites contribute to the oxidative dehydrogenation of ethanol at mild temperature, and −Ov−CeIII sites to the subsequent acetalization between the generated acetaldehyde and ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silva, V. M. T. M.; Rodrigues, A. E. Novel process for diethylacetal synthesis. AIChE J. 2005, 51, 2752–2768.

    CAS  Google Scholar 

  2. Silva, V. M. T. M.; Rodrigues, A. E. Synthesis of diethylacetal: Thermodynamic and kinetic studies. Chem. Eng. Sci. 2001, 56, 1255–1263.

    CAS  Google Scholar 

  3. Nord, K. E.; Haupt, D. Reducing the emission of particles from a diesel engine by adding an oxygenate to the fuel. Environ. Sci. Technol. 2005, 39, 6260–6265.

    CAS  Google Scholar 

  4. Yin, K.; Chao, Y. G.; Lv, F.; Tao, L.; Zhang, W. Y.; Lu, S. Y.; Li, M. G.; Zhang, Q. H.; Gu, L.; Li, H. B. et al. One nanometer PtIr nanowires as high-efficiency bifunctional catalysts for electrosynthesis of ethanol into high value-added multicarbon compound coupled with hydrogen production. J. Am. Chem. Soc. 2021, 143, 10822–10827.

    CAS  Google Scholar 

  5. Zhou, P.; Zhang, Q. H.; Chao, Y. G.; Wang, L.; Li, Y. J.; Chen, H.; Gu, L.; Guo S. J. Partially reduced Pd single atoms on CdS nanorods enable photocatalytic reforming of ethanol into high value-added multicarbon compound. Chem 2021, 7, 1033–1049.

    CAS  Google Scholar 

  6. Distillers Co Yeast Ltd; Bramwyche, P. L.; Mugdan, M.; Stanley, H. M. Improvements in or relating to the manufacture of diethyl acetal. GB Patent 625131A, September 18, 1949.

  7. Capeletti, M. R.; Balzano, L.; de la Puente, G.; Laborde, M.; Sedran, U. Synthesis of acetal (1,1-diethoxyethane) from ethanol and acetaldehyde over acidic catalysts. Appl. Catal. A: Gen. 2000, 198, L1–L4.

    CAS  Google Scholar 

  8. Silva, V. M. T. M.; Rodrigues, A. E. Dynamics of a fixed-bed adsorptive reactor for synthesis of diethylacetal. AIChE J. 2002, 48, 625–634.

    CAS  Google Scholar 

  9. Gaspar, A. B.; Esteves, A. M. L.; Mendes, F. M. T.; Barbosa, F. G.; Appel, L. G. Chemicals from ethanol—The ethyl acetate one-pot synthesis. Appl. Catal. A: Gen. 2009, 363, 109–114.

    CAS  Google Scholar 

  10. Chakraborty, S.; Piszel, P. E.; Hayes, C. E.; Baker, R. T.; Jones W. D. Highly selective formation of n-butanol from ethanol through the Guerbet process: A tandem catalytic approach. J. Am. Chem. Soc. 2015, 137, 14264–14267.

    CAS  Google Scholar 

  11. Liu, H. C.; Iglesia, E. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures. J. Phys. Chem. B 2005, 109, 2155–2163.

    CAS  Google Scholar 

  12. Bueno, A. C.; Gonçalves, J. A.; Gusevskaya, E. V. Palladium-catalyzed oxidation of primary alcohols: Highly selective direct synthesis of acetals. Appl. Catal. A: Gen. 2007, 329, 1–6.

    CAS  Google Scholar 

  13. Thavornprasert, K. A.; de la Goublaye de Ménorval, B.; Capron, M.; Gornay, J.; Jalowiecki-Duhamel, L.; Sécordel, X.; Cristol, S.; Dubois, J. L.; Dumeignil, F. Selective oxidation of ethanol towards a highly valuable product over industrial and model catalysts. Biofuels 2012, 3, 25–34.

    CAS  Google Scholar 

  14. He, X. H.; Liu, H. C. Efficient synthesis of 1,1-diethoxyethane via sequential ethanol reactions on silica-supported copper and H-Y zeolite catalysts. Catal. Today 2014, 233, 133–139.

    CAS  Google Scholar 

  15. Liu, H. C.; Iglesia, E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12−nPO40 keggin structures. J. Phys. Chem. B 2003, 107, 10840–10847.

    CAS  Google Scholar 

  16. Kolah, A. K.; Mahajani, S. M.; Sharma, M. M. Acetalization of formaldehyde with methanol in batch and continuous reactive distillation columns. Ind. Eng. Chem. Res. 1996, 35, 3707–3720.

    CAS  Google Scholar 

  17. Ding, J.; Huang, L.; Ji, G. J.; Zeng, Y. W.; Chen, Z. X.; Eddings, E. G.; Fan, M. H.; Zhong, Q.; Kung, H. H. Modification of catalytic properties of hollandite manganese oxide by Ag intercalation for oxidative acetalization of ethanol to diethoxyethane. ACS Catal. 2021, 11, 5347–5357.

    CAS  Google Scholar 

  18. Zhang, H. X.; Zhang, W. Q.; Zhao, M.; Yang, P. J.; Zhu, Z. P. A site-holding effect of TiO2 surface hydroxyl in the photocatalytic direct synthesis of 1,1-diethoxyethane from ethanol. Chem. Commun. 2017, 53, 1518–1521.

    CAS  Google Scholar 

  19. Zhang, H. X.; Wu, Y. P.; Li, L.; Zhu, Z. P. Photocatalytic direct conversion of ethanol to 1,1- diethoxyethane over noble-metal-loaded TiO2 nanotubes and nanorods. Chem. Sus. Chem. 2015, 8, 1226–1231.

    CAS  Google Scholar 

  20. Chao, Y. G.; Zhang, W. Q.; Wu, X. M.; Gong, N. N.; Bi, Z. H.; Li, Y. Q.; Zheng, J. F.; Zhu, Z. P.; Tan, Y. S. Visible-light direct conversion of ethanol to 1,1-diethoxyethane and hydrogen over a non-precious metal photocatalyst. Chem.—Eur. J. 2019, 25, 189–194.

    CAS  Google Scholar 

  21. Xiao, Y.; Wang, Y.; Varma, A. Low-temperature selective oxidation of methanol over Pt-Bi bimetallic catalysts. J. Catal. 2018, 363, 144–153.

    CAS  Google Scholar 

  22. Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000, 57, 127–141.

    CAS  Google Scholar 

  23. Xiao, Y.; Greeley, J.; Varma, A.; Zhao, Z. J.; Xiao, G. M. An experimental and theoretical study of glycerol oxidation to 1, 3-dihydroxyacetone over bimetallic Pt-Bi catalysts. AIChE J. 2017, 63, 705–715.

    CAS  Google Scholar 

  24. Zhao, S.; Dai, Z.; Guo, W. J.; Chen, F. X.; Liu, Y. L.; Chen, R. Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure:Dual reaction pathways induced by photogenerated 1O2 and holes. Appl. Catal. B: Environ. 2019, 244, 206–214.

    CAS  Google Scholar 

  25. Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539.

    CAS  Google Scholar 

  26. Tateiwa, J. I.; Horiuchi, H.; Uemura, S. Ce3+-exchanged montmorillonite (Ce3+-mont) as a useful substrate-selective acetalization catalyst. J. Org. Chem. 1995, 60, 4039–4043.

    CAS  Google Scholar 

  27. Idriss, H.; Diagne, C.; Hindermann, J. P.; Kiennemann, A.; Barteau, M. A. Reactions of acetaldehyde on CeO2 and CeO2-supported catalysts. J. Catal. 1995, 155, 219–237.

    CAS  Google Scholar 

  28. Calaza, F. C.; Xu, Y.; Mullins, D. R.; Overbury, S. H. Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2 (111). J. Am. Chem. Soc. 2012, 134, 18034–18045.

    CAS  Google Scholar 

  29. Millange, F.; Walton, R. I.; O’Hare, D. Time-resolved in-situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds. J. Mater. Chem. 2000, 10, 1713–1720.

    CAS  Google Scholar 

  30. Fornasari, G.; Gazzano, M.; Matteuzzi, D.; Trifirò, F.; Vaccari, A. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides. Appl. Clay Sci. 1995, 10, 69–82.

    CAS  Google Scholar 

  31. Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385.

    CAS  Google Scholar 

  32. Sood, S.; Umar, A.; Mehta, S. K.; Kansal, S. K. α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol. Ceram. Int. 2015, 41, 3355–3364.

    CAS  Google Scholar 

  33. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767.

    CAS  Google Scholar 

  34. Li, G. S.; Mao, Y. C.; Li, L. P.; Feng, S. H.; Wang, M. Q.; Yao, X. Solid solubility and transport properties of nanocrystalline (CeO2)1−x(BiO1.5)x by hydrothermal conditions. Chem. Mater. 1999, 11, 1259–1266.

    CAS  Google Scholar 

  35. Lou, Y.; Wang, L.; Zhao, Z. Y.; Zhang, Y. H.; Zhang, Z. G.; Lu, G. Z.; Guo, Y.; Guo, Y. L. Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Appl. Catal. B: Environ. 2014, 146, 43–49.

    CAS  Google Scholar 

  36. Grabchenko, M. V.; Mamontov, G. V.; Zaikovskii, V. I.; La Parola, V.; Liotta, L. F.; Vodyankina, O. V. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl. Catal. B: Environ. 2020, 260, 118148.

    CAS  Google Scholar 

  37. Aneggi, E.; Wiater, D.; de Leitenburg, C.; Llorca, J.; Trovarelli, A. Shape-dependent activity of ceria in soot combustion. ACS Catal. 2014, 4, 172–181.

    CAS  Google Scholar 

  38. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

    CAS  Google Scholar 

  39. van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

    CAS  Google Scholar 

  40. Ro, I.; Resasco, J.; Christopher, P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS Catal. 2018, 8, 7368–7387.

    CAS  Google Scholar 

  41. Morgan, W. E.; Stec, W. J.; Van Wazer, J. R. Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem. 1973, 12, 953–955.

    CAS  Google Scholar 

  42. Zhang, Q.; Zhou, Y.; Wang, F.; Dong, F.; Li, W.; Li, H. M.; Patzke, G. R. From semiconductors to semimetals: Bismuth as a photocatalyst for NO oxidation in air. J. Mater. Chem. A 2014, 2, 11065–11072.

    CAS  Google Scholar 

  43. Zhao, Z. W.; Zhang, W. D.; Lv, X. S.; Sun, Y. J.; Dong, F.; Zhang, Y. X. Noble metal-free Bi nanoparticles supported on TiO2 with plasmon-enhanced visible light photocatalytic air purification. Environ. Sci.: Nano 2016, 3, 1306–1317.

    CAS  Google Scholar 

  44. Lai, M.; Zhao, J.; Chen, Q. C.; Feng, S. J.; Bai, Y. J.; Li, Y. X.; Wang, C. Y. Photocatalytic toluene degradation over Bi-decorated TiO2: Promoted O2 supply to catalyst’s surface by metallic Bi. Catal. Today 2019, 335, 372–380.

    CAS  Google Scholar 

  45. Zhang, X. Y.; Yang, P. F.; Liu, Y. N.; Pan, J. H.; Li, D. Q.; Wang, B.; Feng, J. T. Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts. J. Catal. 2020, 385, 146–159.

    CAS  Google Scholar 

  46. Liu, M. H.; Wu, X. D.; Liu, S.; Gao, Y. X.; Chen, Z.; Ma, Y.; Ran, R.; Weng, D. Study of Ag/CeO2 catalysts for naphthalene oxidation: Balancing the oxygen availability and oxygen regeneration capacity. Appl. Catal. B: Environ. 2017, 219, 231–240.

    CAS  Google Scholar 

  47. Zhang, X.; Wang, D. K.; Jing, M. Z.; Liu, J.; Zhao, Z.; Xu, G. H.; Song, W. Y.; Wei, Y. C.; Sun, Y. Q. Ordered mesoporous CeO2-supported Ag as an effective catalyst for carboxylative coupling reaction using CO2. ChemCatChem 2019, 11, 2089–2098.

    CAS  Google Scholar 

  48. Liu, S.; Wu, X. D.; Liu, W.; Chen, W. M.; Ran, R.; Li, M.; Weng, D. Soot oxidation over CeO2 and Ag/CeO2: Factors determining the catalyst activity and stability during reaction. J. Catal. 2016, 337, 188–198.

    CAS  Google Scholar 

  49. Binet, C.; Daturi, M.; Lavalley, J. C. IR study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 1999, 50, 207–225.

    CAS  Google Scholar 

  50. Aliotta, C.; Liotta, L. F.; La Parola, V.; Martorana, A.; Muccillo, E. N. S.; Muccillo, R.; Deganello, F. Ceria-based electrolytes prepared by solution combustion synthesis: The role of fuel on the materials properties. Appl. Catal. B: Environ. 2016, 197, 14–22.

    CAS  Google Scholar 

  51. Hu, Z.; Liu, X. F.; Meng, D. M.; Guo, Y.; Guo, Y. L.; Lu, G. Z. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 2016, 6, 2265–2279.

    CAS  Google Scholar 

  52. Kang, D. J.; Yu, X. L.; Ge, M. F. Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal. Chem. Eng. J. 2017, 330, 36–43.

    CAS  Google Scholar 

  53. Hao, Q.; Wang, R. T.; Lu, H. J.; Xie, C. A.; Ao, W. H.; Chen, D. M.; Ma, C.; Yao, W. Q.; Zhu, Y. F. One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity. Appl. Catal. B: Environ. 2017, 219, 63–72.

    CAS  Google Scholar 

  54. Hardcastle, F. D.; Wachs, I. E. The molecular structure of bismuth oxide by Raman spectroscopy. J. Solid State Chem. 1992, 97, 319–331.

    CAS  Google Scholar 

  55. Lu, Y. F.; Huang, Y.; Zhang, Y. F.; Cao, J. J.; Li, H. W.; Bian, C.; Lee, S. C. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. Appl. Catal. B: Environ. 2018, 231, 357–367.

    CAS  Google Scholar 

  56. Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347–354.

    CAS  Google Scholar 

  57. Zaki, M. I.; Hasan, M. A.; Al-Sagheer, F. A.; Pasupulety L. In situ FTIR spectra of pyridine adsorbed on SiO2−Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids Surf. A: Physicochem. Eng. Aspects 2001, 190, 261–274.

    CAS  Google Scholar 

  58. Mann, A. K. P.; Wu, Z. L.; Calaza, F. C.; Overbury, S. H. Adsorption and reaction of acetaldehyde on shape-controlled CeO2 nanocrystals: Elucidation of structure-function relationships. ACS Catal. 2014, 4, 2437–2448.

    CAS  Google Scholar 

  59. Ochoa, J. V.; Trevisanut, C.; Millet, J. M. M.; Busca, G.; Cavani, F. In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides. J. Phys. Chem. C 2013, 117, 23908–23918.

    CAS  Google Scholar 

  60. Llorca, J.; Homs, N.; de la Piscina, P. R. In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts. J. Catal. 2004, 227, 556–560.

    CAS  Google Scholar 

  61. Taifan, W. E.; Yan, G. X.; Baltrusaitis, J. Surface chemistry of MgO/SiO2 catalyst during the ethanol catalytic conversion to 1,3-butadiene: In-situ DRIFTS and DFT study. Catal. Sci. Technol. 2017, 7, 4648–4668.

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 22138001 and 21521005) and the National Key R&D Program of China (No. 2017YFA0206804) is acknowledged. We thank the support of Beijing Engineering Center for Hierarchical Catalysts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing He.

Electronic supplementary material

12274_2022_4848_MOESM1_ESM.pdf

Low temperature one-pot synthesis of 1,1-diethoxyethane from ethanol on Bi/BiCeOx with strong metal-support interactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Liu, J., Cao, M. et al. Low temperature one-pot synthesis of 1,1-diethoxyethane from ethanol on Bi/BiCeOx with strong metal-support interactions. Nano Res. 16, 3709–3718 (2023). https://doi.org/10.1007/s12274-022-4848-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4848-7

Keywords

Navigation