Skip to main content
Log in

Surface group directed low-temperature synthesis and self-assembly of Al nanostructures for lithium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties, but its controllable synthesis remains very challenging with harsh conditions and spontaneously flammable precursors. Herein, a surface group directed method is developed to efficiently achieve low-temperature synthesis and self-assembly of zero-dimensional (0D) Al nanocrystals over one-dimensional (1D) carbon fibers (Al@CFs) through non-flammable AlCl3 reduction at 70 °C. Theoretical calculations unveil surface −OLi groups of carbon fibers exert efficient binding effect to AlCl3, which guides intimate adsorption and in-situ self-assembly of the generated Al nanocrystals. The distinctive 0D-over-1D Al@CFs provides long 1D conductive networks for electron transfer, ultrafine 0D Al nanocrystals for fast lithiation and excellent buffering effect for volume change, thus exhibiting high structure stability and superior lithium storage performance. This work paves the way for mild and controllable synthesis of Al-based nanomaterials for new high-value applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Q.; Zhu, Y. M.; Gao, X.; Wu, Y. X.; Hutchinson, C. Training high-strength aluminum alloys to withstand fatigue. Nat. Commun. 2020, 11, 5198.

    Article  CAS  Google Scholar 

  2. Xia, J. X.; Yamaji, N.; Kasai, T.; Ma, J. F. Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 18381–18385.

    Article  CAS  Google Scholar 

  3. Dai, D. H.; Gu, D. D.; Poprawe, R.; Xia, M. J. Influence of additive multilayer feature on thermodynamics, stress and microstructure development during laser 3D printing of aluminum-based material. Sci. Bull. 2017, 62, 779–787.

    Article  CAS  Google Scholar 

  4. Xia, G. L.; Zhang, H. Y.; Liang, M.; Zhang, J.; Sun, W. W.; Fang, F.; Sun, D. L.; Yu, X. B. Unlocking the lithium storage capacity of aluminum by molecular immobilization and purification. Adv. Mater. 2019, 31, 1901372.

    Article  Google Scholar 

  5. Yang, S.; Lu, S. Y.; Li, Y.; Yu, H.; He, L. X.; Sun, T. M.; Yang, B.; Liu, K. Poly (ethylene oxide) mediated synthesis of sub-100-nm aluminum nanocrystals for deep ultraviolet plasmonic nanomaterials. CCS Chem. 2020, 2, 516–526.

    Article  CAS  Google Scholar 

  6. Zhou, L. N.; Zhang, C.; McClain, M. J.; Manjavacas, A.; Krauter, C. M.; Tian, S.; Berg, F.; Everitt, H. O.; Carter, E. A.; Nordlander, P. et al. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett. 2016, 16, 1478–1484.

    Article  CAS  Google Scholar 

  7. Zhang, F. F.; Plain, J.; Gérard, D.; Martin, J. Surface roughness and substrate induced symmetry-breaking: Influence on the plasmonic properties of aluminum nanostructure arrays. Nanoscale 2021, 13, 1915–1926.

    Article  CAS  Google Scholar 

  8. Wang, H. D.; Tan, H. F.; Luo, X. Y.; Wang, H.; Ma, T.; Lv, M.; Song, X. L.; Jin, S. M.; Chang, X. H.; Li, X. G. The progress on aluminum-based anode materials for lithium-ion batteries. J. Mater. Chem. A 2020, 8, 25649–25662.

    Article  CAS  Google Scholar 

  9. Park, J. H.; Hudaya, C.; Kim, A. Y.; Rhee, D. K.; Yeo, S. J.; Choi, W.; Yoo, P. J.; Lee, J. K. Al-C hybrid nanoclustered anodes for lithium ion batteries with high electrical capacity and cyclic stability. Chem. Commun. 2014, 50, 2837–2840.

    Article  CAS  Google Scholar 

  10. Hu, R. Z.; Zhang, L.; Liu, X.; Zeng, M. Q.; Zhu, M. Investigation of immiscible alloy system of Al-Sn thin films as anodes for lithium ion batteries. Electrochem. Commun. 2008, 10, 1109–1112.

    Article  CAS  Google Scholar 

  11. Zhang, H. Y.; Xia, G. L.; Fang, F.; Sun, D. L.; Yu, X. B. Low-temperature electroless synthesis of mesoporous aluminum nanoparticles on graphene for high-performance lithium-ion batteries. J. Mater. Chem. A 2019, 7, 13917–13921.

    Article  CAS  Google Scholar 

  12. Clark, B. D.; Jacobson, C. R.; Lou, M. H.; Yang, J.; Zhou, L. N.; Gottheim, S.; DeSantis, C. J.; Nordlander, P.; Halas, N. J. Aluminum nanorods. Nano Lett. 2018, 18, 1234–1240.

    Article  CAS  Google Scholar 

  13. McClain, M. J.; Schlather, A. E.; Ringe, E.; King, N. S.; Liu, L. F.; Manjavacas, A.; Knight, M. W.; Kumar, I.; Whitmire, K. H.; Everitt, H. O. et al. Aluminum nanocrystals. Nano Lett. 2015, 15, 2751–2755.

    Article  CAS  Google Scholar 

  14. Meziani, M. J.; Bunker, C. E.; Lu, F. S.; Li, H. T.; Wang, W.; Guliants, E. A.; Quinn, R. A.; Sun, Y. P. Formation and properties of stabilized aluminum nanoparticles. ACS Appl. Mater. Interfaces 2009, 1, 703–709.

    Article  CAS  Google Scholar 

  15. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  16. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  17. Larijani, H. T.; Jahanshahi, M.; Ganji, M. D.; Kiani, M. H. Computational studies on the interactions of glycine amino acid with graphene, h-BN and h-SiC monolayers. Phys. Chem. Chem. Phys. 2017, 19, 1896–1908.

    Article  CAS  Google Scholar 

  18. Ashraf, M. A.; Liu, Z. L.; Li, C.; Peng, W. X.; Najafi, M. Examination of potential of B-CNT (6, 0), Al-CNT (6, 0) and Ga-CNT (6, 0) as novel catalysts to oxygen reduction reaction: A DFT study. J. Mol. Liq. 2019, 290, 111366.

    Article  CAS  Google Scholar 

  19. Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702048.

    Article  Google Scholar 

  20. Liu, Z. L.; Yang, S.; Sun, B. X.; Chang, X. H.; Zheng, Z.; Li, X. G. A peapod-like CoP@C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 10187–10191.

    Article  CAS  Google Scholar 

  21. Wang, P.; Xi, B. J.; Zhang, Z. C. Y.; Huang, M.; Feng, J. K.; Xiong, S. L. Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 15563–15571.

    Article  CAS  Google Scholar 

  22. Xu, X. J.; Liu, J.; Liu, J. W.; Ouyang, L. Z.; Hu, R. Z.; Wang, H.; Yang, L. C.; Zhu, M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707573.

    Article  Google Scholar 

  23. Hu, Z. R.; Chen, F.; Xu, J. L.; Nian, Q.; Lin, D.; Chen, C. J.; Zhu, X.; Chen, Y.; Zhang, M. 3D printing graphene-aluminum nanocomposites. J. Alloy. Compd. 2018, 746, 269–276.

    Article  CAS  Google Scholar 

  24. Speight, J. G. Lange’s Handbook of Chemistry, 16th ed; McGraw-Hill Professional: New York, 2005.

    Google Scholar 

  25. Chang, X.; Xie, Z.; Liu, Z.; Zheng, X.; Zheng, J.; Li, X. Aluminum: An underappreciated anode material for lithium-ion batteries. Energy Stor. Mater. 2020, 25, 93–99.

    Google Scholar 

  26. Wang, Y. L.; Liu, F. M.; Fan, G. L.; Qiu, X. G.; Liu, J. D.; Yan, Z. H.; Zhang, K.; Cheng, F. Y.; Chen, J. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J. Am. Chem. Soc. 2021, 143, 2829–2837.

    Article  CAS  Google Scholar 

  27. Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2015, 6, 8850.

    Article  CAS  Google Scholar 

  28. Hu, R. Z.; Shi, Q.; Wang, H.; Zeng, M. Q.; Zhu, M. Influences of composition on the electrochemical performance in immiscible Sn-Al thin films as anodes for lithium ion batteries. J. Phys. Chem. C 2009, 113, 18953–18961.

    Article  CAS  Google Scholar 

  29. Liu, W. L.; Du, L. Y.; Ju, S. L.; Cheng, X. Y.; Wu, Q.; Hu, Z.; Yu, X. B. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano 2021, 15, 5679–5688.

    Article  CAS  Google Scholar 

  30. Li, G. L.; Chen, H.; Zhang, B.; Guo, H.; Chen, S. P.; Chang, X. H.; Wu, X. H.; Zheng, J.; Li, X. G. Interfacial covalent bonding enables transition metal phosphide superior lithium storage performance. Appl. Surf. Sci. 2022, 582, 152404.

    Article  CAS  Google Scholar 

  31. Wang, W. J.; Zhu, X. H.; Fu, L. Touch ablation of lithium dendrites via liquid metal for high-rate and long-lived batteries. CCS Chem. 2021, 3, 686–695.

    Article  CAS  Google Scholar 

  32. Hu, R. Z.; Ouyang, Y. P.; Liang, T.; Wang, H.; Liu, J.; Chen, J.; Yang, C. H.; Yang, L. C.; Zhu, M. Stabilizing the nanostructure of SnO2 anodes by transition metals: A route to achieve high initial Coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 2017, 29, 1605006.

    Article  Google Scholar 

  33. Li, G. L.; Wang, Y. T.; Guo, H.; Liu, Z. L.; Chen, P. H.; Zheng, X. Y.; Sun, J. L.; Chen, H.; Zheng, J.; Li, X. G. Direct plasma phosphorization of Cu foam for Li ion batteries. J. Mater. Chem. A 2020, 8, 16920–16925.

    Article  CAS  Google Scholar 

  34. Jin, T.; Ji, X.; Wang, P. F.; Zhu, K. J.; Zhang, J. X.; Cao, L. S.; Chen, L.; Cui, C. Y.; Deng, T.; Liu, S. F. et al. High-energy aqueous sodium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 11943–11948.

    Article  CAS  Google Scholar 

  35. An, Y. L.; Tian, Y.; Zhang, Y. C.; Wei, C. L.; Tan, L. W.; Zhang, C. H.; Cui, N. X.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Two-dimensional silicon/carbon from commercial alloy and CO2 for lithium storage and flexible Ti3C2Tx MXene-based lithium-metal batteries. ACS Nano 2020, 14, 17574–17588.

    Article  CAS  Google Scholar 

  36. Sun, X.; Yang, C. K.; Zhao, Y. J.; Li, Y.; Shang, Z. C.; Zhou, H. H.; Liu, W.; Luo, L.; Sun, X. M. Ultrathin aluminum nanosheets grown on carbon nanotubes for high performance lithium ion batteries. Adv. Funct. Mater. 2022, 32, 2109112.

    Article  CAS  Google Scholar 

  37. Yao, L.; Gu, Q. F.; Yu, X. B. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano 2021, 15, 3228–3240.

    Article  CAS  Google Scholar 

  38. Hu, R. Z.; Zeng, M. Q.; Li, C. Y. V.; Zhu, M. Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al-Sn system. J. Power Sources 2009, 188, 268–273.

    Article  CAS  Google Scholar 

  39. Zhao, X. D.; Kong, X. L.; Liu, Z. L.; Li, Z.; Xie, Z. W.; Wu, Z. Y.; He, F.; Chang, X. H.; Yang, P. P.; Zheng, J. et al. The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today 2021, 40, 101245.

    Article  CAS  Google Scholar 

  40. Liu, Z. L.; Yang, S. L.; Sun, B. X.; Yang, P. P.; Zheng, J.; Li, X. G. Low-temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high-performance lithium ion batteries. Angew. Chem., Int. Ed. 2020, 59, 1975–1979.

    Article  CAS  Google Scholar 

  41. Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 2017, 10, 1950–1958.

    Article  CAS  Google Scholar 

  42. Zhang, H. Y.; Ju, S. L.; Xia, G. L.; Yu, X. B. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 2022, 8, eabl8245.

    Article  CAS  Google Scholar 

  43. Kwon, G. D.; Moyen, E.; Lee, Y. J.; Joe, J.; Pribat, D. Graphene-coated aluminum thin film anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 29486–29495.

    Article  CAS  Google Scholar 

  44. Tahmasebi, M. H.; Kramer, D.; Geßwein, H.; Zheng, T. Y.; Leung, K. C.; Lo, B. T. W.; Mönig, R.; Boles, S. T. In situ formation of aluminum-silicon-lithium active materials in aluminum matrices for lithium-ion batteries. J. Mater. Chem. A 2020, 8, 4877–4888.

    Article  CAS  Google Scholar 

  45. Chen, S.; Yang, X. Y.; Zhang, J.; Ma, J. P.; Meng, Y. Q.; Tao, K. J.; Li, F.; Geng, J. X. Aluminum-lithium alloy as a stable and reversible anode for lithium batteries. Electrochim. Acta 2021, 368, 137626.

    Article  CAS  Google Scholar 

  46. Doglione, R.; Vankova, S.; Amici, J.; Penazzi, N. Microstructure evolution and capacity: Comparison between 2090-T8 aluminium alloy and pure aluminium anodes. J. Alloys Compd. 2017, 727, 428–435.

    Article  CAS  Google Scholar 

  47. Chen, B. J.; Zu, L. H.; Liu, Y.; Meng, R. J.; Feng, Y. T.; Peng, C. X.; Zhu, F.; Hao, T. Z.; Ru, J. J.; Wang, Y. G. et al. Space-confined atomic clusters catalyze superassembly of silicon nanodots within carbon frameworks for use in lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 3137–3142.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22101065 and 51972075), the Natural Science Foundation of Heilongjiang Province (No. YQ2021B001), the China Postdoctoral Science Foundation (No. 2020M681075), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei He, Zhiliang Liu or Jie Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Li, Z., Zhao, X. et al. Surface group directed low-temperature synthesis and self-assembly of Al nanostructures for lithium storage. Nano Res. 16, 1733–1739 (2023). https://doi.org/10.1007/s12274-022-4776-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4776-6

Keywords

Navigation