Skip to main content
Log in

Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a simple method of preparing a high performance, Sn-based anode material for lithium ion batteries (LIBs). Adding H2O2 to an aqueous solution containing Sn2+ and aniline results in simultaneous polymerization of aniline and oxidation of Sn2+ to SnO2, leading to a homogeneous composite of polyaniline and SnO2. Hydrogen thermal reduction of the above composite yields N-doped carbon with hierarchical porosity and homogeneously distributed, ultrafine Sn particles. The nanocomposite exhibits excellent performance as an anode material for lithium ion batteries, showing a high reversible specific capacity of 788 mAh·g−1 at a current density of 100 mA·g−1 after 300 cycles and very good stability up to 5,000 mA·g−1. The simple preparation method combined with the good electrochemical performance is highly promising to promote the application of Sn based anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crabtree, G. Perspective: The energy-storage revolution. Nature 2015, 526, S92.

    Article  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  3. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  Google Scholar 

  4. Ghadbeigi, L.; Harada, J. K.; Lettiere, B. R.; Sparks, T. D. Performance and resource considerations of Li-ion battery electrode materials. Energy Environ. Sci. 2015, 8, 1640–1650.

    Article  Google Scholar 

  5. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

    Article  Google Scholar 

  6. Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590–593.

    Article  Google Scholar 

  7. Kaskhedikar, N. A.; Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 2009, 21, 2664–2680.

    Article  Google Scholar 

  8. Liu, J.; Song, K. P.; Zhu, C. B.; Chen, C. C.; van Aken, P. A.; Maier, J.; Yu, Y. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. ACS Nano 2014, 8, 7051–7059.

    Article  Google Scholar 

  9. Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

    Article  Google Scholar 

  10. Li, S.; Niu, J. J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6, 7872.

    Article  Google Scholar 

  11. Mangolini, L.; Kortshagen, U. Plasma-assisted synthesis of silicon nanocrystal inks. Adv. Mater. 2007, 19, 2513–2519.

    Article  Google Scholar 

  12. Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.; Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 2008, 7, 916–921.

    Article  Google Scholar 

  13. Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.

    Article  Google Scholar 

  14. Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50.

    Article  Google Scholar 

  15. Zhang, Y. J.; Jiang, L.; Wang, C. R. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries. Nanoscale 2015, 7, 11940–11944.

    Article  Google Scholar 

  16. Wang, J. W.; Fan, F. F.; Liu, Y.; Jungjohann, K. L.; Lee, S. W.; Mao, S. X.; Liu, X. H.; Zhu, T. Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling. J. Electrochem. Soc. 2014, 161, F3019–F3024.

    Article  Google Scholar 

  17. Liu, Y. C.; Zhang, N.; Jiao, L. F.; Chen, J. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 2015, 27, 6702–6707.

    Article  Google Scholar 

  18. Luo, B.; Qiu, T. F.; Ye, D. L.; Wang, L. Z.; Zhi, L. J. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 2016, 22, 232–240.

    Article  Google Scholar 

  19. Luo, B.; Qiu, T. F.; Hao, L.; Wang, B.; Jin, M. H.; Li, X. L.; Zhi, L. J. Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. J. Mater. Chem. A 2016, 4, 362–367.

    Article  Google Scholar 

  20. Cho, J. S.; Kang, Y. C. Nanofibers comprising yolk-shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the kirkendall diffusion effect and their electrochemical properties. Small 2015, 11, 4673–4681.

    Article  Google Scholar 

  21. Li, W.; Yang, R.; Zheng, J.; Li, X. G. Tandem plasma reactions for Sn/C composites with tunable structure and high reversible lithium storage capacity. Nano Energy 2013, 2, 1314–1321.

    Article  Google Scholar 

  22. Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153–157.

    Article  Google Scholar 

  23. Li, L. M.; Liu, E. H.; Li, J.; Yang, Y. J.; Shen, H. J.; Huang, Z. Z.; Xiang, X. X.; Li, W. A doped activated carbon prepared from polyaniline for high performance supercapacitors. J. Power Sources 2010, 195, 1516–1521.

    Article  Google Scholar 

  24. Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013, 13, 470–474.

    Article  Google Scholar 

  25. Hu, P. F.; Wang, H.; Yang, Y.; Yang, J.; Lin, J.; Guo, L. Renewable-biomolecule-based full lithium-ion batteries. Adv. Mater. 2016, 28, 3486–3492.

    Article  Google Scholar 

  26. Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X.-H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

    Article  Google Scholar 

  27. Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

    Article  Google Scholar 

  28. Pels, J. R.; Kapteign, F.; Moulign, J. A.; Zhu, Q.; Tomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653.

    Article  Google Scholar 

  29. Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724.

    Article  Google Scholar 

  30. Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.

    Article  Google Scholar 

  31. Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H. K.; Zhang, H. J.; Chen, X. H.; Song, H. H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 2011, 49, 4013–4023.

    Article  Google Scholar 

  32. Wu, G.; Dai, C. S.; Wang, D. L.; Li, D. Y.; Li, N. Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells. J. Mater. Chem. A 2010, 20, 3059–3068.

    Article  Google Scholar 

  33. Bulusheva, L. G.; Okotrub, A. V.; Kinloch, I. A.; Asanov, I. P.; Kurenya, A. G.; Kudashov, A. G.; Chen, X.; Song, H. Effect of nitrogen doping on Raman spectra of multi-walled carbon nanotubes. Phys. Status Solidi B 2008, 245, 1971–1974.

    Article  Google Scholar 

  34. Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J. M. D. Raman microprobe studies on carbon materials. Carbon 1994, 32, 1523–1532.

    Article  Google Scholar 

  35. Sharifi, T.; Nitze, F.; Barzegar, H. R.; Tai, C.-W.; Mazurkiewicz, M.; Malolepszy, A.; Stobinski, L.; Wågberg, T. Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 2012, 50, 3535–3541.

    Article  Google Scholar 

  36. Sjöström, H.; Stafström, S.; Boman, M.; Sundgren, J. E. Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys. Rev. Lett. 1995, 75, 1336–1339.

    Article  Google Scholar 

  37. Maldonado, S.; Morin, S.; Stevenson, K. J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 2006, 44, 1429–1437.

    Article  Google Scholar 

  38. Liu, X. H.; Zhang, J.; Guo, S. J.; Pinna, N. Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. J. Mater. Chem. A 2016, 4, 1423–1431.

    Article  Google Scholar 

  39. Xiang, X. X.; Liu, E. H.; Huang, Z. Z.; Shen, H. J.; Tian, Y. Y.; Xiao, C. Y.; Yang, J. J.; Mao, Z. H. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery. Mater. Res. Bull. 2011, 46, 1266–1271.

    Article  Google Scholar 

  40. Stejskal, J.; Trchová, M.; Hromádková, J. I.; Kovárová, J.; Kalendová, A. The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. Polym. Int. 2010, 59, 875–878.

    Article  Google Scholar 

  41. Yuan, D. S.; Zhou, T. X.; Zhou, S. L.; Zou, W. J.; Mo, S. S.; Xia, N. N. Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochem. Commun. 2011, 13, 242–246.

    Article  Google Scholar 

  42. Li, L. M.; Liu, E. H.; Yang, Y. J.; Shen, H. J.; Huang, Z. Z.; Xiang, X. X. Nitrogen-containing carbons prepared from polyaniline as anode materials for lithium secondary batteries. Mater. Lett. 2010, 64, 2115–2117.

    Article  Google Scholar 

  43. Youn, D. H.; Heller, A.; Mullins, C. B. Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem. Mater. 2016, 28, 1343–1347.

    Article  Google Scholar 

  44. Qin, J.; He, C. N.; Zhao, N. Q.; Wang, Z. Y.; Shi, C. S.; Liu, E. Z.; Li, J. J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 2014, 8, 1728–1738.

    Article  Google Scholar 

  45. Zhang, G. H.; Zhu, J.; Zeng, W.; Hou, S. C.; Gong, F. L.; Li, F.; Li, C. C.; Duan, H. G. Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 2014, 9, 61–70.

    Article  Google Scholar 

  46. Zhang, N.; Zhao, Q.; Han, X. P.; Yang, J. G.; Chen, J. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale 2014, 6, 2827–2832.

    Article  Google Scholar 

  47. Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169–3175.

    Article  Google Scholar 

  48. Sun, J. H.; Xiao, L. H.; Jiang, S. D.; Li, G. X.; Huang, Y.; Geng, J. X. Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 2015, 27, 4594–4603.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. U1201241, 11375020, 51431001, and 21321001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zheng or Xingguo Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Wang, T., Liu, Z. et al. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 10, 1950–1958 (2017). https://doi.org/10.1007/s12274-016-1381-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1381-6

Keywords

Navigation