Skip to main content
Log in

Progress on nanostructured gel catalysts for oxygen electrocatalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Driven by the serious ecological problems, it is urgent to explore high-efficiency sustainable energy technologies. Oxygen electrocatalysis acts as important half-reactions in the emerging electrochemical energy techniques including electrolysis and batteries. Gel composites exhibit the merits of rich porous, superior hydrophilic, and large specific surface area, which can significantly improve the electrolyte penetration and boost the kinetics process of oxygen electrocatalysis. In this invited contribution, the advances and challenges of a novel gel materials for oxygen electrocatalysis are summarized. Starting from the structure—activity—performance relationship of gel materials, synthetic routes of nanostructured gel materials, namely, radical polymerization, sol-gel method, hydrothermal/solvothermal reactions, and ligand-substitution method, are introduced. Afterward, the gel composites are divided into polymer-based, metal-based, and carbon-based materials in turn, and their applications in oxygen electrocatalysis are discussed respectively. At the end, the perspective and challenges for advanced gel oxygen electrocatalysts are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  CAS  Google Scholar 

  2. Wan, S.; Zhang, T.; Chen, H. K.; Liao, B. K.; Guo, X. P. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium. Ind. Crops Prod. 2022, 178, 114649.

    Article  CAS  Google Scholar 

  3. Yang, H.; Gong, L. Q.; Wang, H. M.; Dong, C. L.; Wang, J. L.; Qi, K.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075.

    Article  CAS  Google Scholar 

  4. Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

    Article  Google Scholar 

  5. Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 2019, 31, 1803800.

    Article  Google Scholar 

  6. Zaman, S.; Huang, L.; Douka, A. I.; Yang, H.; You, B.; Xia, B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem., Int. Ed. 2021, 60, 17832–17852.

    Article  CAS  Google Scholar 

  7. Chen, H.; Zhou, Y. S.; Guo, W.; Xia, B. Y. Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production. Chin. Chem. Lett. 2022, 33, 1831–1840.

    Article  CAS  Google Scholar 

  8. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    Article  CAS  Google Scholar 

  9. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  10. Xia, B. Y.; Ding, S. J.; Wu, H. B.; Wang, X.; Wen, X. Hierarchically structured Pt/CNT@TiO2 nanocatalysts with ultrahigh stability for low-temperature fuel cells. RSC Adv. 2012, 2, 792–796.

    Article  CAS  Google Scholar 

  11. Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

    Article  CAS  Google Scholar 

  12. Zaman, S.; Tian, X. L.; Su, Y. Q.; Cai, W. W.; Yan, Y.; Qi, R. J.; Douka, A. I.; Chen, S. H.; You, B.; Liu, H. F. et al. Direct integration of ultralow-platinum alloy into nanocarbon architectures for efficient oxygen reduction in fuel cells. Sci. Bull. 2021, 66, 2207–2216.

    Article  CAS  Google Scholar 

  13. Huang, L.; Su, Y. Q.; Qi, R. J.; Dang, D.; Qin, Y. Y.; Xi, S. B.; Zaman, S.; You, B.; Ding, S. J.; Xia, B. Y. Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew. Chem., Int. Ed. 2021, 66, 25530–25537.

    Article  Google Scholar 

  14. Xia, B. Y.; Wu, H. B.; Yan, Y.; Wang, H. B.; Wang, X. One-pot synthesis of platinum nanocubes on reduced graphene oxide with enhanced electrocatalytic activity. Small 2014, 16, 2336–2339.

    Article  Google Scholar 

  15. Li, Y. J.; Guo, S. J. Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today 2019, 28, 100774.

    Article  CAS  Google Scholar 

  16. Zhou, X. L.; Liu, H.; Xia, B. Y.; Ostrikov, K.; Zheng, Y.; Qiao, S. Z. Customizing the microenvironment of CO2 electrocatalysis via three-phase interface engineering. SmartMat 2022, 3, 111–129.

    Article  CAS  Google Scholar 

  17. Fang, Z. W.; Li, P. P.; Yu, G. H. Gel electrocatalysts: An emerging material platform for electrochemical energy conversion. Adv. Mater. 2020, 32, 2003191.

    Article  CAS  Google Scholar 

  18. Guo, Y. H.; Bae, J.; Zhao, F.; Yu, G. H. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem. 2019, 1, 335–348.

    Article  CAS  Google Scholar 

  19. Wang, Y. Q.; Shi, Y.; Pan, L. J.; Ding, Y.; Zhao, Y.; Li, Y.; Shi, Y.; Yu, G. H. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 2015, 15, 7736–7741.

    Article  CAS  Google Scholar 

  20. Fang, Z. W.; Wu, P.; Yu, K.; Li, Y. F.; Zhu, Y.; Ferreira, P. J.; Liu, Y. Y.; Yu, G. H. Hybrid organic-inorganic gel electrocatalyst for stable acidic water oxidation. ACS Nano 2019, 13, 14368–14376.

    Article  CAS  Google Scholar 

  21. Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 2017, 27, 1606497.

    Article  Google Scholar 

  22. Liu, W.; Herrmann, A. K.; Bigall, N. C.; Rodriguez, P.; Wen, D.; Oezaslan, M.; Schmidt, T. J.; Gaponik, N.; Eychmüller, A. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts. Acc. Chem. Res. 2015, 48, 154–162.

    Article  CAS  Google Scholar 

  23. Yang, H.; Dong, C. L.; Wang, H. M.; Qi, R. J.; Gong, L. Q.; Lu, Y. R.; He, C. H.; Chen, S. H.; You, B.; Liu, H. F. et al. Constructing nickel-iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2202812119.

    Article  CAS  Google Scholar 

  24. Cai, B.; Eychmüller, A. Promoting electrocatalysis upon aerogels. Adv. Mater. 2019, 31, 1804881.

    Article  Google Scholar 

  25. Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

    Article  CAS  Google Scholar 

  26. Cheng, Y.; Pang, K. L.; Xu, X. H.; Yuan, P. F.; Zhang, Z. G.; Wu, X.; Zheng, L. R.; Zhang, J. N.; Song, R. Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon 2020, 157, 153–163.

    Article  CAS  Google Scholar 

  27. Chen, Z.; Zhang, S.; Yang, J.; Chen, C.; Song, Y. C.; Xu, C. L.; Wu, M. Q.; Liao, J. X. High loading of NiFe active sites on a melamine formaldehyde carbon-based aerogel towards efficient bifunctional electrocatalysis for water splitting. Sustainable Energy Fuels 2021, 5, 4973–4980.

    Article  CAS  Google Scholar 

  28. Zhou, B. L.; Liu, L. Z.; Yang, Z. F.; Li, X. Q.; Wen, Z. H.; Chen, L. Porous organic polymer gel derived electrocatalysts for efficient oxygen reduction. ChemElectroChem 2019, 6, 485–492.

    Article  CAS  Google Scholar 

  29. Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112.

    Article  CAS  Google Scholar 

  30. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    Article  CAS  Google Scholar 

  31. Fang, Z. W.; Zhang, A. P.; Wu, P.; Yu, G. H. Inorganic cyanogels and their derivatives for electrochemical energy storage and conversion. ACS Mater. Lett. 2019, 1, 158–170.

    Article  CAS  Google Scholar 

  32. Yin, Z. G.; Zheng, Q. D. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv. Energy Mater. 2012, 2, 179–218.

    Article  CAS  Google Scholar 

  33. Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292.

    Article  CAS  Google Scholar 

  34. Shanmugam, S.; Xu, S. H.; Adnan, N. N. M.; Boyer, C. Heterogeneous photocatalysis as a means for improving recyclability of organocatalyst in “living” radical polymerization. Macromolecules 2018, 51, 779–790.

    Article  CAS  Google Scholar 

  35. Cuthbert, J.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K. Stem gels by controlled radical polymerization. Trends Chem. 2020, 2, 341–353.

    Article  CAS  Google Scholar 

  36. Esposito, S. “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 2019, 12, 668.

    Article  CAS  Google Scholar 

  37. Abdelwahab, A.; Carrasco-Marín, F.; Pérez-Cadenas, A. F. Binary and ternary 3D nanobundles metal oxides functionalized carbon xerogels as electrocatalysts toward oxygen reduction reaction. Materials 2020, 13, 3531.

    Article  CAS  Google Scholar 

  38. Zhao, X. L.; Yao, W. Q.; Gao, W. W.; Chen, H.; Gao, C. Wet-spun superelastic graphene aerogel millispheres with group effect. Adv. Mater. 2017, 29, 1701482.

    Article  Google Scholar 

  39. Xu, X.; Zhang, Q. Q.; Yu, Y. K.; Chen, W. L.; Hu, H.; Li, H. Naturally dried graphene aerogels with superelasticity and tunable poisson’s ratio. Adv. Mater. 2016, 28, 9223–9230.

    Article  CAS  Google Scholar 

  40. Dong, D. P.; Guo, H. T.; Li, G. Y.; Yan, L. F.; Zhang, X. T.; Song, W. H. Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. Nano Energy 2017, 39, 470–477.

    Article  CAS  Google Scholar 

  41. Xu, Z.; Gao, C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267–1276.

    Article  CAS  Google Scholar 

  42. Yang, H. S.; Li, Z. L.; Lu, B.; Gao, J.; Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Zhang, P. P.; Qu, L. T. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 2018, 12, 11407–11416.

    Article  CAS  Google Scholar 

  43. Sun, Y. Q.; Wu, Q.; Shi, G. Q. Supercapacitors based on self-assembled graphene organogel. Phys. Chem. Chem. Phys. 2011, 13, 17249–17254.

    Article  CAS  Google Scholar 

  44. Liang, Q. W.; Ploychompoo, S.; Chen, J. D.; Zhou, T. T.; Luo, H. J. Simultaneous Cr(VI) reduction and bisphenol A degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light. Chem. Eng. J. 2020, 384, 123256.

    Article  CAS  Google Scholar 

  45. Liu, Z. Y.; Yang, X. Y.; Lu, B. Q.; Shi, Z. P.; Sun, D. M.; Xu, L.; Tang, Y. W.; Sun, S. H. Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Appl. Catal. B:Environ. 2019, 243, 86–93.

    Article  CAS  Google Scholar 

  46. Shi, H. X.; Fang, Z. W.; Zhang, X.; Li, F.; Tang, Y. W.; Zhou, Y. M.; Wu, P.; Yu, G. H. Double-network nanostructured hydrogel-derived ultrafine Sn-Fe alloy in three-dimensional carbon framework for enhanced lithium storage. Nano Lett. 2018, 18, 3193–3198.

    Article  CAS  Google Scholar 

  47. Yang, H.; Han, X. T.; Douka, A. I.; Huang, L.; Gong, L. Q.; Xia, C. F.; Park, H. S.; Xia, B. Y. Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 2021, 37, 2007602.

    Article  Google Scholar 

  48. Li, T. Q.; Jin, H. R.; Liang, Z.; Huang, L.; Lu, Y. C.; Yu, H. M.; Hu, Z. M.; Wu, J. B.; Xia, B. Y.; Feng, G. et al. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 2018, 10, 6844–6849.

    Article  CAS  Google Scholar 

  49. Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    Article  CAS  Google Scholar 

  50. Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

    Article  CAS  Google Scholar 

  51. Kawase, T.; Nishiyama, Y.; Nakamura, T.; Ebi, T.; Matsumoto, K.; Kurata, H.; Oda, M. Cyclic [5]paraphenyleneacetylene: Synthesis, properties, and formation of a ring-in-ring complex showing a considerably large association constant and entropy effect. Angew. Chem., Int. Ed. 2007, 46, 1086–1088.

    Article  CAS  Google Scholar 

  52. Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.

    Article  Google Scholar 

  53. Chen, Z.; To, J. W. F.; Wang, C.; Lu, Z. D.; Liu, N.; Chortos, A.; Pan, L. J.; Wei, F.; Cui, Y.; Bao, Z. N. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater. 2014, 4, 1400207.

    Article  Google Scholar 

  54. Kang, L.; Shi, L. J.; Zeng, Q.; Liao, B. K.; Wang, B.; Guo, X. P. Melamine resin-coated lignocellulose fibers with robust superhydrophobicity for highly effective oil/water separation. Sep. Purif. Technol. 2021, 279, 119737.

    Article  CAS  Google Scholar 

  55. Altava, B.; Burguete, M. I.; García-Verdugo, E.; Luis, S. V. Chiral catalysts immobilized on achiral polymers: Effect of the polymer support on the performance of the catalyst. Chem. Soc. Rev. 2018, 47, 2722–2771.

    Article  CAS  Google Scholar 

  56. Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133–4142.

    Article  CAS  Google Scholar 

  57. Wang, X. X.; Na, Z. L.; Yin, D. M.; Wang, C. L.; Wu, Y. M.; Huang, G.; Wang, L. M. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation. ACS Nano 2018, 12, 12238–12246.

    Article  CAS  Google Scholar 

  58. Sheets, B. L.; Botte, G. G. Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte. Chem. Commun. 2018, 54, 4250–4253.

    Article  CAS  Google Scholar 

  59. Hu, Q.; Li, G. M.; Liu, X. F.; Zhu, B.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 4318–4322.

    Article  CAS  Google Scholar 

  60. Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. M. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.

    Article  Google Scholar 

  61. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  CAS  Google Scholar 

  62. Yan, D. F.; Xia, C. F.; He, C. H.; Liu, Q. Q.; Chen, G. D.; Guo, W.; Xia, B. Y. A substrate-induced fabrication of active free-standing nanocarbon film as air cathode in rechargeable zinc-air batteries. Small 2022, 18, 2106606.

    Article  CAS  Google Scholar 

  63. Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Liu, Z. Q. Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 6492–6499.

    Article  CAS  Google Scholar 

  64. Liu, Q. Q.; Wang, Q. C.; Wang, J.; Li, Z. G.; Liu, J. J.; Sun, X. Y.; Li, J.; Lei, Y. P.; Dai, L. M.; Wang, P. S. TpyCo2+-based coordination polymers by water-induced gelling trigged efficient oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 2000593.

    Article  CAS  Google Scholar 

  65. Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

    Article  CAS  Google Scholar 

  66. Sutar, P.; Maji, T. K. Coordination polymer gels: Soft metal-organic supramolecular materials and versatile applications. Chem. Commun. 2016, 52, 8055–8074.

    Article  CAS  Google Scholar 

  67. Wang, H.; Chen, B. H.; Liu, D. J. Metal-organic frameworks and metal-organic gels for oxygen electrocatalysis: Structural and compositional considerations. Adv. Mater. 2021, 33, 2008023.

    Article  CAS  Google Scholar 

  68. He, L.; Peng, Z. W.; Jiang, Z. W.; Tang, X. Q.; Huang, C. Z.; Li, Y. F. Novel iron(III)-based metal-organic gels with superior catalytic performance toward luminol chemiluminescence. ACS Appl. Mater. Interfaces 2017, 9, 31834–31840.

    Article  CAS  Google Scholar 

  69. Chen, Y. N.; Yang, Z. Q.; Hu, H. L.; Zhou, X. C.; You, F.; Yao, C.; Liu, F. J.; Yu, P.; Wu, D.; Yao, J. L. et al. Advanced metal-organic frameworks-based catalysts in electrochemical sensors. Front. Chem. 2022, 10, 881172.

    Article  CAS  Google Scholar 

  70. Guo, H. L.; Feng, Q. C.; Xu, K. W.; Xu, J. S.; Zhu, J. X.; Zhang, C.; Liu, T. X. Self-templated conversion of metallogel into heterostructured TMP@carbon quasiaerogels boosting bifunctional electrocatalysis. Adv. Funct. Mater. 2019, 29, 1903660.

    Article  Google Scholar 

  71. Cao, Z. M.; Jiang, Z. W.; Li, Y.; Huang, C. Z.; Li, Y. F. Metal-organic gel-derived multimetal oxides as effective electrocatalysts for the oxygen evolution reaction. ChemSusChem 2019, 12, 2480–2486.

    CAS  Google Scholar 

  72. Feng, X. Y.; Xiao, Y. L.; Huang, H. H.; Wang, Q. S.; Wu, J. Y.; Ke, Z. F.; Tong, Y. X.; Zhang, J. Y. Phytic acid-based FeCo bimetallic metal-organic gels for electrocatalytic oxygen evolution reaction. Chem.—Asian J. 2021, 16, 3213–3220.

    Article  CAS  Google Scholar 

  73. Yan, S.; Zhong, M. X.; Wang, C.; Lu, X. F. Amorphous aerogel of trimetallic FeCoNi alloy for highly efficient oxygen evolution. Chem. Eng. J. 2022, 430, 132955.

    Article  CAS  Google Scholar 

  74. Zhang, L. H.; Shi, Y. M.; Wang, Y.; Shiju, N. R. Nanocarbon catalysts: Recent understanding regarding the active sites. Adv. Sci. 2020, 7, 1902126.

    Article  CAS  Google Scholar 

  75. Li, S. J.; Xie, Y.; Lai, B. L.; Liang, Y. M.; Xiao, K.; Ouyang, T.; Li, N.; Liu, Z. Q. Atomic modulation of Fe-Co pentlandite coupled with nitrogen-doped carbon sphere for boosting oxygen catalysis. Chin. J. Catal. 2022, 43, 1502–1510.

    Article  CAS  Google Scholar 

  76. Zhang, B.; Yang, F.; Liu, X. D.; Wu, N.; Che, S.; Li, Y. F. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Appl. Catal. B: Environ. 2021, 298, 120494.

    Article  CAS  Google Scholar 

  77. Chervin, C. N.; DeSario, P. A.; Parker, J. F.; Nelson, E. S.; Miller, B. W.; Rolison, D. R.; Long, J. W. Aerogel architectures boost oxygen-evolution performance of NiFe2Ox spinels to activity levels commensurate with nickel-rich oxides. ChemElectroChem 2016, 3, 1369–1375.

    Article  CAS  Google Scholar 

  78. Sutar, P.; Maji, T. K. Recent advances in coordination-driven polymeric gel materials: Design and applications. Dalton Trans. 2020, 44, 7658–7672.

    Article  Google Scholar 

  79. Yang, M. S.; Liu, Y. F.; Sun, J. Q.; Zhang, S. S.; Liu, X. J.; Luo, J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Sci. China Mater. 2022, 65, 1176–1186.

    Article  CAS  Google Scholar 

  80. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    Article  CAS  Google Scholar 

  81. Zhou, X. L.; Jin, H. Y.; Xia, B. Y.; Davey, K.; Zheng, Y.; Qiao, S. Z. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Adv. Mater. 2021, 33, 2104341.

    Article  CAS  Google Scholar 

  82. Wu, K. Z.; Zhang, L.; Yuan, Y. F.; Zhong, L. X.; Chen, Z. X.; Chi, X.; Lu, H.; Chen, Z. H.; Zou, R.; Li, T. Z. et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries. Adv. Mater. 2020, 32, 2002292.

    Article  CAS  Google Scholar 

  83. Karthik, V.; Selvakumar, P.; Kumar, P. S.; Vo, D. V. N.; Gokulakrishnan, M.; Keerthana, P.; Elakkiya, V. T.; Rajeswari, R. Graphene-based materials for environmental applications: A review. Environ. Chem. Lett. 2021, 14, 3631–3644.

    Article  Google Scholar 

  84. Song, L.; Hu, C. G.; Xiao, Y.; He, J. P.; Lin, Y.; Connell, J. W.; Dai, L. M. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy 2020, 71, 104595.

    Article  CAS  Google Scholar 

  85. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    Article  CAS  Google Scholar 

  86. Tang, S. B.; Zhou, X. H.; Liu, T. Y.; Zhang, S. Y.; Yang, T. T.; Luo, Y.; Sharman, E.; Jiang, J. Single nickel atom supported on hybridized graphene-boron nitride nanosheet as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2019, 7, 26261–26265.

    Article  CAS  Google Scholar 

  87. Liu, J.; Bunes, B. R.; Zang, L.; Wang, C. Y. Supported single-atom catalysts: Synthesis, characterization, properties, and applications. Environ. Chem. Lett. 2018, 16, 477–505.

    Article  CAS  Google Scholar 

  88. Deng, Q. M.; Zhao, J.; Wu, T. T.; Chen, G. B.; Hansen, H. A.; Vegge, T. 2D transition metal-TCNQ sheets as bifunctional singleatom catalysts for oxygen reduction and evolution reaction (ORR/OER). J. Catal. 2019, 370, 378–384.

    Article  CAS  Google Scholar 

  89. Deng, Y. J.; Chi, B.; Tian, X. L.; Cui, Z. M.; Liu, E. S.; Jia, Q. Y.; Fan, W. J.; Wang, G. H.; Dang, D.; Li, M. S. et al. g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A 2019, 7, 5020–5030.

    Article  CAS  Google Scholar 

  90. Chen, C.; Su, H.; Lu, L. N.; Hong, Y. S.; Chen, Y. Z.; Xiao, K.; Ouyang, T.; Qin, Y. L.; Liu, Z. Q. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem. Eng. J. 2021, 408, 127814.

    Article  CAS  Google Scholar 

  91. He, T.; Lu, B. Z.; Chen, Y.; Wang, Y.; Zhang, Y. Q.; Davenport, J. L.; Chen, A. P.; Pao, C. W.; Liu, M.; Sun, Z. F. et al. Nanowrinkled carbon aerogels embedded with FeNx sites as effective oxygen electrodes for rechargeable zinc-air battery. Research 2019, 2019, 6813585.

    Article  CAS  Google Scholar 

  92. Li, H.; Shu, X. X.; Tong, P. R.; Zhang, J. H.; An, P. F.; Lv, Z. X.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe-Ni alloy nanoclusters anchored on carbon aerogels as high-efficiency oxygen electrocatalysts in rechargeable Zn-air batteries. Small 2021, 17, 2102002.

    Article  CAS  Google Scholar 

  93. Peng, R. L.; Li, J. L.; Wang, X. N.; Zhao, Y. M.; Li, B.; Xia, B. Y.; Zhou, H. C. Single-atom implanted two-dimensional MOFs as efficient electrocatalysts for the oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 4661–4668.

    Article  CAS  Google Scholar 

  94. Douka, A. I.; Yang, H.; Huang, L.; Zaman, S.; Yue, T.; Guo, W.; You, B.; Xia, B. Y. Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 2021, 3, e12067.

    Article  CAS  Google Scholar 

  95. Liu, S. J.; Li, Y. Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Structural and process controls of AIEgens for NIR-II theranostics. Chem. Sci. 2021, 12, 3427–3436.

    Article  CAS  Google Scholar 

  96. Tan, M. J.; Li, B.; Chee, P.; Ge, X. M.; Liu, Z. L.; Zong, Y.; Loh, X. J. Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. J. Power Sources 2018, 400, 566–571.

    Article  CAS  Google Scholar 

  97. Dou, J. L.; Qi, M. Y.; Wang, H. R.; Shi, W. W.; Luan, X. J.; Guo, W. X.; Xiao, L.; Zhao, C. Z.; Cheng, D.; Jiang, T. T. et al. SiO2-templated ferrocenyl porous organic polymer gel derived porous Carbon/Fe2C nanohybrids with interpenetrating macropores as oxygen reduction electrocatalyst for Zn-air batteries. Micropor. Mesopor. Mater. 2021, 320, 111101.

    Article  CAS  Google Scholar 

  98. Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.

    Article  Google Scholar 

  99. Li, P. P.; Jin, Z. Y.; Qian, Y. M.; Fang, Z. W.; Xiao, D.; Yu, G. H. Probing enhanced site activity of Co-Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis. ACS Energy Lett. 2019, 4, 1793–1802.

    Article  CAS  Google Scholar 

  100. Li, P. P.; Jin, Z. Y.; Qian, Y. M.; Fang, Z. W.; Xiao, D.; Yu, G. H. Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 2020, 35, 78–86.

    Article  CAS  Google Scholar 

  101. Chen, C.; Wang, X. T.; Zhong, J. H.; Liu, J. L.; Waterhouse, G. I. N.; Liu, Z. Q. Epitaxially grown heterostructured SrMn3O6−x-SrMnO3 with high-valence Mn3+/4+ for improved oxygen reduction catalysis. Angew. Chem., Int. Ed. 2021, 66, 22043–22050.

    Article  Google Scholar 

  102. Wang, H. T.; Wang, W.; Zaman, S.; Yu, Y.; Wu, Z. X.; Liu, H. F.; Xia, B. Y. Dicyandiamide and iron-tannin framework derived nitrogen-doped carbon nanosheets with encapsulated iron carbide nanoparticles as advanced pH-universal oxygen reduction catalysts. J. Colloid Interf. Sci. 2018, 530, 196–201.

    Article  CAS  Google Scholar 

  103. Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.

    Article  CAS  Google Scholar 

  104. Hong, J. W.; Kang, S. W.; Choi, B. S.; Kim, D.; Lee, S. B.; Han, S. W. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410–2419.

    Article  CAS  Google Scholar 

  105. Sun, Z. F.; Li, Z. Y.; He, Y. H.; Shen, R. J.; Deng, L.; Yang, M. H.; Liang, Y. Z.; Zhang, Y. Ferrocenoyl phenylalanine: A new strategy toward supramolecular hydrogels with multistimuli responsive properties. J. Am. Chem. Soc. 2013, 135, 13379–13386.

    Article  CAS  Google Scholar 

  106. Liu, W.; Rodriguez, P.; Borchardt, L.; Foelske, A.; Yuan, J. P.; Herrmann, A. K.; Geiger, D.; Zheng, Z. K.; Kaskel, S.; Gaponik, N. et al. Bimetallic aerogels: High-performance electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 9849–9852.

    Article  CAS  Google Scholar 

  107. Cai, B.; Hübner, R.; Sasaki, K.; Zhang, Y. Z.; Su, D.; Ziegler, C.; Vukmirovic, M. B.; Rellinghaus, B.; Adzic, R. R.; Eychmüller, A. Core-shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2018, 57, 2963–2966.

    Article  CAS  Google Scholar 

  108. Dong, X.; Li, J. R.; Wei, D. H.; Li, R.; Qu, K. G.; Wang, L.; Xu, S. L.; Kang, W. J.; Li, H. B. Pd(II)/Ni(II)-dimethylglyoxime derived Pd-Ni-P@N-doped carbon hybrid nanocatalysts for oxygen reduction reaction. Appl. Surf. Sci. 2019, 479, 273–279.

    Article  CAS  Google Scholar 

  109. Wu, P.; Fang, Z. W.; Zhang, A. P.; Zhang, X.; Tang, Y. W.; Zhou, Y. M.; Yu, G. H. Chemically binding scaffolded anodes with 3D graphene architectures realizing fast and stable lithium storage. Research 2019, 2019, 8393085.

    Article  CAS  Google Scholar 

  110. Xia, Z. H.; An, L.; Chen, P. K.; Xia, D. G. Non-Pt nanostructured catalysts for oxygen reduction reaction: Synthesis, catalytic activity and its key factors. Adv. Energy Mater. 2016, 6, 1600458.

    Article  Google Scholar 

  111. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  CAS  Google Scholar 

  112. Lu, X. F.; Xia, B. Y.; Zang, S. Q.; Lou, X. W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 4634–4650.

    Article  CAS  Google Scholar 

  113. Gates, B. C.; Flytzani-Stephanopoulos, M.; Dixon, D. A.; Katz, A. Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research. Catal. Sci. Technol. 2017, 7, 4259–4275.

    Article  CAS  Google Scholar 

  114. Corma, A.; Concepción, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; López-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775–781.

    Article  CAS  Google Scholar 

  115. Shi, J. J.; Shu, X. X.; Xiang, C. S.; Li, H.; Li, Y.; Du, W.; An, P. F.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries. J. Mater. Chem. A 2021, 9, 6861–6871.

    Article  CAS  Google Scholar 

  116. Kang, Q. L.; Li, M. Y.; Shi, J. W.; Lu, Q. Y.; Gao, F. A universal strategy for carbon-supported transition metal phosphides as highperformance bifunctional electrocatalysts towards efficient overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 19447–19456.

    Article  CAS  Google Scholar 

  117. Hu, C. G.; Dai, L. M. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem., Int. Ed. 2016, 55, 11736–11758.

    Article  CAS  Google Scholar 

  118. Zhu, Y. G.; Shang, C. Q.; Wang, Z. Y.; Zhang, J. Q.; Yang, M. Y.; Cheng, H.; Lu, Z. G. Co and N co-modified carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Rare Metals 2021, 40, 90–95.

    Article  Google Scholar 

  119. Li, D. H.; Jia, Y.; Chang, G. J.; Chen, J.; Liu, H. W.; Wang, J. C.; Hu, Y. F.; Xia, Y. Z.; Yang, D. J.; Yao, X. D. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345–2356.

    Article  CAS  Google Scholar 

  120. Tan, M. L.; He, T.; Liu, J.; Wu, H. Q.; Li, Q.; Zheng, J.; Wang, Y.; Sun, Z. F.; Wang, S. Y.; Zhang, Y. Supramolecular bimetallogels: A nanofiber network for bimetal/nitrogen Co-doped carbon electrocatalysts. J. Mater. Chem. A 2018, 6, 8227–8232.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22102125). The Scientific Research Foundation of Wuhan Institute of Technology (No. K2021040) and the Innovation Foundation of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCX202108) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueliang Jiang or Bao Yu Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Hu, H., Xia, C. et al. Progress on nanostructured gel catalysts for oxygen electrocatalysis. Nano Res. 15, 10343–10356 (2022). https://doi.org/10.1007/s12274-022-4677-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4677-8

Keywords

Navigation