Skip to main content
Log in

Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Along with the keeping growing demand for high-energy-density energy storage system, high-voltage Li-metal batteries (LMBs) have attracted many attentions. In view of many defects of the commercial electrolytes, such as flammability, limited operation temperature range, and severe Li dendrite growth, non-flammable phosphate-based localized highly concentrated electrolytes (LHCE) have been explored as one of the safe electrolytes for LMBs. But until now there is rare report on wide-temperature range LMBs using phosphate-based electrolytes. Here, we prepare a wide-temperature LHCE, which is composed of lithium difluoro(oxalato)borate (LiDFOB), triethyl phosphate (TEP), and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (HFE), and explore the applicability in wide-temperature LMBs from −40 to 70 °C. In the LHCE, both TEP and HFE are non-flammable, and Li+ is highly coordinated with TEP and DFOB, which can effectively inhibit the TEP decomposition on anode, and facilitate the preferential reduction of DFOB, thus obtain a robust solid electrolyte interphase (SEI) to suppress Li dendrite growth and side reactions. Therefore, this LHCE can not only endow Li/Cu and Li/Li cells with high Coulombic efficiency (CE) and long cycling lifespan, but also be applied to LiFePO4 (LFP)/Li and LiNi0.5Co0.2Mn0.3O2 (NCM523)/Li LMBs. Most importantly, the NCM523/Li LMBs with LHCE can deliver stable cycling performance at 4.5 V high-voltage and high-temperature (70 °C), as well as excellent low-temperature capacity retention even though both charging and discharging process were carried out at −40 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

    Article  CAS  Google Scholar 

  2. Zou, J.; Yuan, K. G.; Zhao, J.; Wang, B. J.; Chen, S. Y.; Huang, J. Y.; Li, H.; Niu, X. B.; Wang, L. P. Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeSx (1 ≤ x ≤ 1.14) cathodes. Energy Storage Mater. 2021, 43, 579–584.

    Article  Google Scholar 

  3. Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 2012, 100, 1518–1534.

    Article  CAS  Google Scholar 

  4. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  5. Xu, J. J.; Hu, Y. Y.; Liu, T.; Wu, X. D. Improvement of cycle stability for high-voltage lithium-ion batteries by in-situ growth of SEI film on cathode. Nano Energy 2014, 5, 67–73.

    Article  CAS  Google Scholar 

  6. Li, T.; Zhang, X. Q.; Shi, P.; Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 2019, 3, 2647–2661.

    Article  CAS  Google Scholar 

  7. Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.

    Article  CAS  Google Scholar 

  8. Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426–427.

    Article  CAS  Google Scholar 

  9. Wang, Z. C.; Sun, Y. Y.; Mao, Y. Y.; Zhang, F. R.; Zheng, L.; Fu, D. S.; Shen, Y. B.; Hu, J. C.; Dong, H. L.; Xu, J. J. et al. Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 2020, 30, 228–237.

    Article  Google Scholar 

  10. Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212.

    Article  Google Scholar 

  11. Li, Y. C.; Veith, G. M.; Browning, K. L.; Chen, J. H.; Hensley, D. K.; Paranthaman, M. P.; Dai, S.; Sun, X. G. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium-ion batteries. Nano Energy 2017, 40, 9–19.

    Article  CAS  Google Scholar 

  12. Landesfeind, J.; Gasteiger, H. A. Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes. J. Electrochem. Soc. 2019, 166, A3079–A3097.

    Article  Google Scholar 

  13. Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

    Article  CAS  Google Scholar 

  14. Zhang, S. S.; Xu, K.; Allen, J. L.; Jow, T. R. Effect of propylene carbonate on the low temperature performance of Li-ion cells. J. Power Sources 2002, 110, 216–221.

    Article  CAS  Google Scholar 

  15. Guo, F.; Kang, T.; Liu, Z. J.; Tong, B.; Guo, L. M.; Wang, Y.; Liu, C. H.; Chen, X.; Zhao, Y. F.; Shen, Y. B. et al. An advanced lithium metal-carbon nanotube composite anode for high-performance lithium-oxygen batteries. Nano Lett. 2019, 19, 6377–6384.

    Article  CAS  Google Scholar 

  16. Park, S. J.; Hwang, J. Y.; Yoon, C. S.; Jung, H. G.; Sun, Y. K. Stabilization of lithium-metal batteries based on in-situ formation of stable solid electrolyte interphase layer. ACS Appl. Mater. Interfaces 2018, 10, 17985–17993.

    Article  CAS  Google Scholar 

  17. Wan, G. J.; Guo, F. H.; Li, H.; Cao, Y L.; Ai, X. P.; Qian, J. F.; Li, Y. X.; Yang, H. X. Suppression of dendritic lithium growth by in-situ formation of a chemically stable and mechanically strong solid electrolyte interphase. ACS Appl. Mater. Interfaces 2018, 10, 593–601.

    Article  CAS  Google Scholar 

  18. Chen, L.; Sun, W. L.; Xu, K.; Dong, Q. Y.; Zheng, L.; Wang, J.; Lu, D. R.; Shen, Y. B.; Zhang, J. Y.; Fu, F. et al. How Prussian blue analogues can be stable in concentrated aqueous electrolytes. ACS Energy Lett. 2022, 7, 1672–1678.

    Article  CAS  Google Scholar 

  19. Huang, Y. F.; Sun, W. L.; Xu, K.; Zhang, J. S.; Zhang, H.; Li, J. L.; He, L. W.; Cai, L. F.; Fu, F.; Qin, J. Q. et al. Robust interphase on both anode and cathode enables stable aqueous lithium-ion battery with coulombic efficiency exceeding 99%. Energy Storage Mater. 2022, 46, 577–582.

    Article  Google Scholar 

  20. Zhou, D.; Liu, R. L.; He, Y. B.; Li, F. Y.; Liu, M.; Li, B. H.; Yang, Q. H.; Cai, Q.; Kang, F. Y. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater. 2016, 6, 1502214.

    Article  Google Scholar 

  21. Guo, Q. P.; Han, Y.; Wang, H.; Hong, X. B.; Zheng, C. M.; Liu, S. K.; Xie, K. Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes. RSC Adv. 2016, 6, 101638–101644.

    Article  CAS  Google Scholar 

  22. Basile, A.; Bhatt, A. I.; O’Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 2016, 7, ncomms11794.

    Article  Google Scholar 

  23. Wang, Z. C.; Zhang, F. R.; Sun, Y. Y.; Zheng, L.; Shen, Y. B.; Fu, D. S.; Li, W. F.; Pan, A. R.; Wang, L.; Xu, J. J. et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy Mater. 2021, 11, 2003752.

    Article  CAS  Google Scholar 

  24. Xiao, L. F.; Zeng, Z. Q.; Liu, X. W.; Fang, Y. J.; Jiang, X. Y.; Shao, Y. Y.; Zhuang, L.; Ai, X. P.; Yang, H. X.; Cao, Y. L. et al. Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett. 2019, 4, 483–488.

    Article  CAS  Google Scholar 

  25. Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.

    Article  CAS  Google Scholar 

  26. Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C. J.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548–1558.

    Article  CAS  Google Scholar 

  27. Yang, H. J.; Guo, C.; Chen, J. H.; Naveed, A.; Yang, J.; Nuli, Y. N.; Wang, J. L. An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 791–795.

    Article  CAS  Google Scholar 

  28. Schedlbauer, T.; Krüger, S.; Schmitz, R.; Schmitz, R. W.; Schreiner, C.; Gores, H. J.; Passerini, S.; Winter, M. Lithium difluoro(oxalato)borate: A promising salt for lithium metal based secondary batteries? Electrochim. Acta 2013, 92, 102–107.

    Article  CAS  Google Scholar 

  29. Allen, J. L.; Han, S. D.; Boyle, P. D.; Henderson, W. A. Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox). J. Power Sources 2011, 196, 9737–9742.

    Article  CAS  Google Scholar 

  30. Zhou, H. M.; Liu, F. R.; Li, J. Preparation, thermal stability and electrochemical properties of LiODFB. J. Mater. Sci. Technol. 2012, 28, 723–727.

    Article  Google Scholar 

  31. Zhang, F. R.; Sun, Y. Y.; Wang, Z. C.; Fu, D. S.; Li, J.; Hu, J. C.; Xu, J. J.; Wu, X. D. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 23774–23780.

    Article  CAS  Google Scholar 

  32. Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324–2328.

    Article  CAS  Google Scholar 

  33. Gholizadeh, R.; Wang, Y. J. Molecular dynamics simulation of the aggregation phenomenon in the late stages of silica materials preparation. Chem. Eng. Sci. 2018, 184, 62–71.

    Article  CAS  Google Scholar 

  34. Wang, J. H.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7, 12032.

    Article  CAS  Google Scholar 

  35. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.

    Article  CAS  Google Scholar 

  36. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

    Article  CAS  Google Scholar 

  37. Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4, 174–185.

    Article  CAS  Google Scholar 

  38. Li, X.; Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Li, Q. Y.; Jiao, S. H.; Liu, N.; Zhao, W. G.; Zhang, J. G.; Xu, W. Effects of imideorthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 2469–2479.

    Article  CAS  Google Scholar 

  39. Zhou, H. M.; Xiao, K. W.; Li, J.; Xiao, D. M.; Jiang, Y. X. Synthesis of lithium difluoro(oxalate)borate (LiODFB), phase diagram and ions coordination of LiODFB in dimethyl carbonate. J. Cent. South Univ. 2018, 25, 550–560.

    Article  CAS  Google Scholar 

  40. Polu, A. R.; Rhee, H. W. Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int. J. Hydrog. Energy 2017, 42, 7212–7219.

    Article  CAS  Google Scholar 

  41. Septiani, N. L. W.; Kaneti, Y. V.; Fathoni, K. B.; Kani, K.; Allah, A. E.; Yuliarto, B.; Nugraha; Dipojono, H. K.; Alothman, Z. A.; Golberg, D. et al. Self-assembly of two-dimensional bimetallic nickel-cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem. Mater. 2020, 32, 7005–7018.

    Article  CAS  Google Scholar 

  42. Wang, Z. C.; Zhang, H. Y.; Xu, J. J.; Pan, A. R.; Zhang, F. R.; Wang, L.; Han, R.; Hu, J. C.; Liu, M. N.; Wu, X. D. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2112598.

    Article  CAS  Google Scholar 

  43. Takada, K.; Yamada, Y.; Yamada, A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent. ACS Appl. Mater. Interfaces 2019, 11, 35770–35776.

    Article  CAS  Google Scholar 

  44. Dong, Y.; Zhang, N.; Li, C. X.; Zhang, Y. F.; Jia, M.; Wang, Y. Y.; Zhao, Y. R.; Jiao, L. F.; Cheng, F. Y.; Xu, J. Z. Fire-retardant phosphate-based electrolytes for high-performance lithium metal batteries. ACS Appl. Energy Mater. 2019, 2, 2708–2716.

    Article  CAS  Google Scholar 

  45. Shen, X.; Zhang, R.; Chen, X.; Cheng, X. B.; Li, X. Y.; Zhang, Q. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength? Adv. Energy Mater. 2020, 10, 1903645.

    Article  CAS  Google Scholar 

  46. Zhou, H. M.; Yang, Z. H.; Xiao, D. M.; Xiao, K. W.; Li, J. An electrolyte to improve the deep charge-discharge performance of LiNi0.8Co0.15Al0.05O2 cathode. J. Mater. Sci. Mater. Electron. 2018, 29, 6648–6659.

    Article  CAS  Google Scholar 

  47. Feng, D. J.; Chen, S. M.; Wang, R. M.; Chen, T. H.; Gu, S. J.; Su, J. L.; Dong, T.; Liu, Y. W. Mixed lithium salts electrolyte improves the high-temperature performance of nickel-rich based lithium-ion batteries. J. Electrochem. Soc. 2020, 167, 110544.

    Article  CAS  Google Scholar 

  48. Zhou, H. M.; Xiao, K. W.; Li, J. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material. J. Power Sources 2016, 302, 274–282.

    Article  CAS  Google Scholar 

  49. Du, K.; Wang, C.; Balaya, P.; Gajjela, S. R.; Law, M. A fire-retarding electrolyte using triethyl phosphate as a solvent for sodium-ion batteries. Chem. Commun. 2022, 58, 533–536.

    Article  CAS  Google Scholar 

  50. Yang, H. J.; Li, Q. Y.; Guo, C.; Naveed, A.; Yang, J.; Nuli, T.; Wang, J. L. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chem. Commun. 2018, 54, 4132–4135.

    Article  CAS  Google Scholar 

  51. Weber, I.; Wang, B.; Bodirsky, C.; Chakraborty, M.; Wachtler, M.; Diemant, T.; Schnaidt, J.; Behm, R. J. Model studies on solid electrolyte interphase formation on graphite electrodes in ethylene carbonate and dimethyl carbonate II: Graphite powder electrodes. ChemElectroChem 2020, 7, 4794–4809.

    Article  CAS  Google Scholar 

  52. Holoubek, J.; Liu, H. D.; Wu, Z. H.; Yin, Y. J.; Xing, X.; Cai, G. R.; Yu, S. C.; Zhou, H. Y.; Pascal, T. A.; Chen, Z. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 2021, 6, 303–313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos 22179142 and 22075314). The XPS characterization is supported by Nano-X (Vacuum Interconnected Nanotech Workstation, Chinese Academy of Sciences, Suzhou 215123, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Xu, Jieyun Zheng or Xiaodong Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, A., Wang, Z., Zhang, F. et al. Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Res. 16, 8260–8268 (2023). https://doi.org/10.1007/s12274-022-4655-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4655-1

Keywords

Navigation