Skip to main content
Log in

High-safety and high-voltage lithium metal batteries enabled by nonflammable diluted highly concentrated electrolyte

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium metal batteries (LMBs) show great promise for achieving energy densities over 400 Wh·kg−1. However, highly flammable organic electrolytes are a long-lasting problem that triggers safety hazards and hinders the commercial application of LMBs. Here, a nonflammable diluted highly concentrated electrolyte (DHCE) with ethoxy(pentafluoro)cyclotriphosphazene (PFPN) as a diluent is developed to simultaneously achieve high safety and cycling stability of high-voltage LMBs. The optimal DHCE not only ensures reversible Li deposition/dissolution behavior with a superior average Coulombic efficiency (CE) over 99.1% on lithium metal anode (LMA), but also suppresses side reactions and stress crack on the LiCoO2 (LCO) under high cut-off voltage. The newly developed DHCE exhibits high thermal stability, showing complete nonflammability and reduced heat generation between the electrolyte and delithiated LCO/cycled LMA. This work offers an opportunity for rational designing nonflammable electrolytes toward high-voltage and safe LMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.

    ADS  CAS  Google Scholar 

  2. Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

    CAS  PubMed  Google Scholar 

  3. Chen, S. R.; Dai, F.; Cai, M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS Energy Lett. 2020, 5, 3140–3151.

    CAS  Google Scholar 

  4. Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

    CAS  PubMed  Google Scholar 

  5. Wang, Y.; Zhang, Q. H.; Xue, Z. C.; Yang, L. F.; Wang, J. Y.; Meng, F. Q.; Li, Q. H.; Pan, H. Y.; Zhang, J. N.; Jiang, Z. et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv. Energy Mater. 2020, 10, 2001413.

    CAS  Google Scholar 

  6. Zhu, Z.; Yu, D. W.; Shi, Z.; Gao, R.; Xiao, X. H.; Waluyo, I.; Ge, M. Y.; Dong, Y. H.; Xue, W. J.; Xu, G. Y. et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh·L−1. Energy Environ. Sci. 2020, 13, 1865–1878.

    CAS  Google Scholar 

  7. Zhang, J. N.; Li, Q. H.; Ouyang, C. Y.; Yu, X. Q.; Ge, M. Y.; Huang, X. J.; Hu, E. Y.; Ma, C.; Li, S. F.; Xiao, R. J. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603.

    ADS  CAS  Google Scholar 

  8. Lyu, Y. C.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J. et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2000982.

    CAS  Google Scholar 

  9. Liu, Q. Q.; Chen, Z. R.; Liu, Y.; Hong, Y. R.; Wang, W. N.; Wang, J. H.; Zhao, B.; Xu, Y. F.; Wang, J. W.; Fan, X. L. et al. Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries. Energy Storage Mater. 2021, 37, 521–529.

    Google Scholar 

  10. Zhang, H.; Zeng, Z. Q.; He, R. J.; Wu, Y. K.; Hu, W.; Lei, S.; Liu, M. C.; Cheng, S. J.; Xie, J. 1,3,5-Trifluorobenzene and fluorobenzene co-assisted electrolyte with thermodynamic and interfacial stabilities for high-voltage lithium metal battery. Energy Storage Mater. 2022, 48, 393–402.

    CAS  Google Scholar 

  11. Wang, H. S.; Yu, Z. A.; Kong, X.; Huang, W.; Zhang, Z. W.; Mackanic, D. G.; Huang, X. Y.; Qin, J.; Bao, Z. N.; Cui, Y. Dualsolvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, 2008619.

    CAS  Google Scholar 

  12. Sun, N. N.; Li, R. H.; Zhao, Y.; Zhang, H. K.; Chen, J. H.; Xu, J. T.; Li, Z. D.; Fan, X. L.; Yao, X. Y.; Peng, Z. Anionic coordination manipulation of multilayer solvation structure electrolyte for high-rate and low-temperature lithium metal battery. Adv. Energy Mater. 2022, 12, 2200621.

    CAS  Google Scholar 

  13. Liu, J. D.; Wu, M. G.; Li, X.; Wu, D. X.; Wang, H. P.; Huang, J. D.; Ma, J. M. Amide-functional, Li3N/LiF-rich heterostructured electrode electrolyte interphases for 4.6 V Li∥LiCoO2 batteries. Adv. Energy Mater. 2023, 13, 2300084.

    CAS  Google Scholar 

  14. Yang, C.; Liao, X. B.; Zhou, X.; Sun, C. L.; Qu, R.; Han, J.; Zhao, Y.; Wang, L. G.; You, Y.; Lu, J. Phosphate-rich interface for a highly stable and safe 4.6 V LiCoO2 cathode. Adv. Mater. 2023, 35, 2210966.

    CAS  Google Scholar 

  15. Yuan, S. Y.; Kong, T. Y.; Zhang, Y. Y.; Dong, P.; Zhang, Y. J.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem., Int. Edit. 2021, 60, 25624–25638.

    CAS  Google Scholar 

  16. Zhang, Q. K.; Zhang, X. Q.; Hou, L. P.; Sun, S. Y.; Zhan, Y. X.; Liang, J. L.; Zhang, F. S.; Feng, X. N.; Li, B. Q.; Huang, J. Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Adv. Energy Mater. 2022, 12, 2200139.

    CAS  Google Scholar 

  17. Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

    ADS  CAS  Google Scholar 

  18. Chen, Y. L.; Yu, Z. A.; Rudnicki, P.; Gong, H. X.; Huang, Z. J.; Kim, S. C.; Lai, J. C.; Kong, X.; Qin, J.; Cui, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 2021, 143, 18703–18713.

    CAS  PubMed  Google Scholar 

  19. Holoubek, J.; Liu, H. D.; Wu, Z. H.; Yin, Y. J.; Xing, X.; Cai, G. R.; Yu, S. C.; Zhou, H. Y.; Pascal, T. A.; Chen, Z. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 2021, 6, 303–313.

    ADS  CAS  Google Scholar 

  20. Ma, T.; Ni, Y. X.; Wang, Q. R.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Edit. 2022, 61, e202207927.

    ADS  CAS  Google Scholar 

  21. Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H. S.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.

    ADS  CAS  Google Scholar 

  22. Ren, X. D.; Zou, L. F.; Jiao, S. H.; Mei, D. H.; Engelhard, M. H.; Li, Q. Y.; Lee, H.; Niu, C. J.; Adams, B. D.; Wang, C. M. et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 2019, 4, 896–902.

    CAS  Google Scholar 

  23. Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C. J.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548–1558.

    CAS  Google Scholar 

  24. Jiang, Z. P.; Zeng, Z. Q.; Hu, W.; Han, Z. L.; Cheng, S. J.; Xie, J. Diluted high concentration electrolyte with dual effects for practical lithium-sulfur batteries. Energy Storage Mater. 2021, 36, 333–340.

    Google Scholar 

  25. Zhang, H.; Zeng, Z. Q.; Ma, F. F.; Wu, Q.; Wang, X. L.; Cheng, S. J.; Xie, J. Cyclopentylmethyl ether, a non-fluorinated, weakly solvating and wide temperature solvent for high-performance lithium metal battery. Angew. Chem., Int. Edit. 2023, 62, e202300771.

    CAS  Google Scholar 

  26. Zhang, H.; Zeng, Z. Q.; Liu, M. C.; Ma, F. F.; Qin, M. S.; Wang, X. L.; Wu, Y. K.; Lei, S.; Cheng, S. J.; Xie, J. A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries. Chem. Sci. 2023, 14, 2745–2754.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu, Z. A.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 2022, 7, 94–106.

    ADS  CAS  Google Scholar 

  28. Peng, X. D.; Lin, Y. K.; Wang, Y.; Li, Y. J.; Zhao, T. S. A lightweight localized high-concentration ether electrolyte for high-voltage Li-ion and Li-metal batteries. Nano Energy 2022, 96, 107102.

    CAS  Google Scholar 

  29. Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

    CAS  Google Scholar 

  30. Yoo, D. J.; Yang, S.; Kim, K. J.; Choi, J. W. Fluorinated aromatic diluent for high-performance lithium metal batteries. Angew. Chem., Int. Edit. 2020, 59, 14869–14876.

    CAS  Google Scholar 

  31. Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

    ADS  CAS  Google Scholar 

  32. Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.

    ADS  CAS  Google Scholar 

  33. Hu, Z. L.; Xian, F.; Guo, Z. Y.; Lu, C. L.; Du, X. F.; Cheng, X. Y.; Zhang, S.; Dong, S. M.; Cui, G. L.; Chen, L. Q. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem. Mater. 2020, 32, 3405–3413.

    CAS  Google Scholar 

  34. Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

    ADS  CAS  Google Scholar 

  35. Zheng, J.; Ji, G. B.; Fan, X. L.; Chen, J.; Li, Q.; Wang, H. Y.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. S. High-fluorinated electrolytes for Li-S batteries. Adv. Energy Mater. 2019, 9, 1803774.

    Google Scholar 

  36. Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

    CAS  Google Scholar 

  37. Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2005991.

    CAS  Google Scholar 

  38. Qin, M. S.; Liu, M. C.; Zeng, Z. Q.; Wu, Q.; Wu, Y. K.; Zhang, H.; Lei, S.; Cheng, S. J.; Xie, J. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries. Adv. Energy Mater. 2022, 12, 2201801.

    CAS  Google Scholar 

  39. Qin, M. S.; Zeng, Z. Q.; Wu, Q.; Yan, H.; Liu, M. C.; Wu, Y. K.; Zhang, H.; Lei, S.; Cheng, S. J.; Xie, J. Dipole-dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the horizon of electrolyte design. Energy Environ. Sci. 2023, 16, 546–556.

    CAS  Google Scholar 

  40. Zhang, H.; Zeng, Z. Q.; Ma, F. F.; Wang, X. L.; Wu, Y. K.; Liu, M. C.; He, R. J.; Cheng, S. J.; Xie, J. Juggling formation of HF and LiF to reduce crossover effects in carbonate electrolyte with fluorinated cosolvents for high-voltage lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2212000.

    CAS  Google Scholar 

  41. Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

    Google Scholar 

  42. Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.

    ADS  CAS  PubMed  Google Scholar 

  43. Hu, J. L.; Jin, Z. X.; Zhong, H.; Zhan, H.; Zhou, Y. H.; Li, Z. Y. A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries. J. Power Sources 2012, 197, 297–300.

    ADS  CAS  Google Scholar 

  44. Li, X.; Li, W. K.; Chen, L.; Lu, Y.; Su, Y. F.; Bao, L. Y.; Wang, J.; Chen, R. J.; Chen, S.; Wu, F. Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries. J. Power Sources 2018, 378, 707–716.

    ADS  CAS  Google Scholar 

  45. Xie, L. Q.; Wang, L.; Pang, X. Y.; He, X. M.; Tian, G. Y. Research on the estimation of state of charge for lithium battery based on equivalent modeling and parameter identification. Chin. Battery Ind. 2020, 24, 66–70.

    Google Scholar 

  46. Shen, W.; Lei, Z. H.; Xie, L. S.; Yang, J.; Nuli, Y. N.; Wang, J. L. Multi-functional additive PFPN for rechargeable lithium sulfur battery with composite cathode materials. Energy Storage Sci. Technol. 2016, 5, 397–403.

    Google Scholar 

  47. Liu, Q. Q.; Liu, Y.; Chen, Z. R.; Ma, Q.; Hong, Y. R.; Wang, J. H.; Xu, Y. F.; Zhao, W.; Hu, Z. K.; Hong, X. et al. An inorganicdominate molecular diluent enables safe localized high concentration electrolyte for high-voltage lithium-metal batteries. Adv. Funct. Mater. 2023, 33, 2209725.

    CAS  Google Scholar 

  48. Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J. Electrochem. Soc. 2002, 149, A622.

    CAS  Google Scholar 

  49. Zhang, C.; Gu, S. C.; Zhang, D. F.; Ma, J. B.; Zheng, H.; Zheng, M. Y.; Lv, R. T.; Yu, K.; Wu, J. Q.; Wang, X. M. et al. Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Mater. 2022, 52, 355–364.

    Google Scholar 

  50. Cao, X.; Gao, P. Y.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Matthews, B. E.; Hu, J. T.; Niu, C. J.; Liu, D. Y.; Arey, B. W. et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Prod. Natl. Acad. Sci. USA 2021, 118, e2020357118.

    CAS  Google Scholar 

  51. Cao, X.; Zou, L. F.; Matthews, B. E.; Zhang, L. C.; He, X. Z.; Ren, X. D.; Engelhard, M. H.; Burton, S. D.; El-Khoury, P. Z.; Lim, H. S. et al. Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Mater. 2021, 34, 76–84.

    Google Scholar 

  52. Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

    Google Scholar 

  53. Lei, S.; Zeng, Z. Q.; Wu, Y. K.; Liu, M. C.; Cheng, S. J.; Xie, J. Non-coordinating flame retardants with varied vapor pressures enabling biphasic fire-extinguishing electrolyte for high safety lithium-ion batteries. Chem. Eng. J. 2023, 463, 142181.

    CAS  Google Scholar 

  54. Wu, Y. K.; Zeng, Z. Q.; Lei, S.; Liu, M. C.; Zhong, W.; Qin, M. S.; Cheng, S. J.; Xie, J. Passivating lithiated graphite via targeted repair of SEI to inhibit exothermic reactions in early-stage of thermal runaway for safer lithium-ion batteries. Angew. Chem., Int. Edit. 2023, 62, e20221777.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Project of State Grid Corporation of China (No. 4000-202320087A-1-1-ZN). The authors gratefully acknowledge the Analytical and Testing Center of HUST for allowing us to use its facilities. The authors thank Shiyanjia Lab (https://www.shiyanjia.com) for the density analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqi Zeng or Jia Xie.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zeng, Z., Wang, S. et al. High-safety and high-voltage lithium metal batteries enabled by nonflammable diluted highly concentrated electrolyte. Nano Res. 17, 2638–2645 (2024). https://doi.org/10.1007/s12274-023-6056-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6056-5

Keywords

Navigation