Skip to main content
Log in

Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Faced with the growing consumption of fossil fuels and the consequent energy/ecological crisis, photocatalysis has become a realistic option to develop new energy source and realize the carbon neutrality. Heterojunction photocatalysts constructed by multiple semiconductors with staggered band structure can spatially separate redox reaction sites to realize synergistic oxidation and reduction reactions, and have captured broad interest. However, the undesigned heterojunctions still encounter some headache difficulties, that is the poor interfacial contact, which will block carrier mobility, thus result in inefficient and instable catalysts. Recently, researchers have been focusing on constructing chemical bonds (especially covalent bonding) between different semiconductors to induce the formation of intimate and stable interface contact. Herein, this review article presents the state-of-the-art progress on interfacial chemical bonds (ICB) in heterojunction photocatalysts and clarifies the function mechanism for enhancing photocatalysis. Given that the formation of ICB strongly depends on the surface characteristics of semiconductors, we clarify the formation mechanism and put forward rational design strategies. More importantly, the current photocatalytic applications of ICB are reviewed to have a deep understanding of structure—activity related mechanisms. Finally, our brief outlooks on the current challenges and future development trends of ICB for next-generation photocatalysts are pointed out to create brand-new strategies for optimizing photocatalytic properties and accelerate the practical applications of ICB with high-performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sayed, M.; Xu, F. Y.; Kuang, P. Y.; Low, J.; Wang, S. Y.; Zhang, L. Y.; Yu, J. G. Sustained CO2-photoreduction activity and high selectivity over Mn,C-codoped ZnO core-triple shell hollow spheres. Nat. Commun. 2021, 12, 4936.

    Article  CAS  Google Scholar 

  2. Loh, J. Y. Y.; Kherani, N. P.; Ozin, G. A. Persistent CO2 photocatalysis for solar fuels in the dark. Nat. Sustain. 2021, 4, 466–473.

    Article  Google Scholar 

  3. Wang, J. W.; Jiang, L.; Huang, H. H.; Han, Z. J.; Ouyang, G. F. Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nat. Commun. 2021, 12, 4276.

    Article  CAS  Google Scholar 

  4. Uekert, T.; Pichler, C. M.; Schubert, T.; Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 2021, 4, 383–391.

    Article  Google Scholar 

  5. Gong, J. K.; Li, C.; Wasielewski, M. R. Advances in solar energy conversion. Chem. Soc. Rev. 2019, 48, 1862–1864.

    Article  CAS  Google Scholar 

  6. Zhao, F. L.; Feng, Y. Y.; Wang, Y.; Zhang, X.; Liang, X. J.; Li, Z.; Zhang, F.; Wang, T.; Gong, J. L.; Feng, W. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat. Commun. 2020, 11, 1443.

    Article  CAS  Google Scholar 

  7. Luo, J. M.; Zhang, S. Q.; Sun, M.; Yang, L. X.; Luo, S. L.; Crittenden, J. C. A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface. ACS Nano 2019, 13, 9811–9840.

    Article  CAS  Google Scholar 

  8. Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

    Article  CAS  Google Scholar 

  9. Zhou, H.; Chen, Z. X.; Kountoupi, E.; Tsoukalou, A.; Abdala, P. M.; Florian, P.; Fedorov, A.; Müller, C. R. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nat. Commun. 2021, 12, 5510.

    Article  CAS  Google Scholar 

  10. Zhang, P.; Lou, X. W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv. Mater. 2019, 11, 1900281.

    Article  Google Scholar 

  11. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  12. Foo, J. J.; Ng, S. F.; Ong, W. J. Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Res., in press, https://doi.org/10.1007/s12274-021-4045-0.

  13. Li, Z. X.; Guo, J.; Wan, Y.; Qin, Y. T.; Zhao, M. T. Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Res. 2022, 15, 3514–3532.

    Article  Google Scholar 

  14. Yan, C. X.; Dong, J. Q.; Chen, Y. Z.; Zhou, W. J.; Peng, Y.; Zhang, Y.; Wang, L. N. Organic photocatalysts: From molecular to aggregate level. Nano Res. 2022, 15, 3835–3858.

    Article  CAS  Google Scholar 

  15. Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

    Article  CAS  Google Scholar 

  16. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

    Article  CAS  Google Scholar 

  17. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Jr. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

    Article  CAS  Google Scholar 

  18. Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.

    Article  CAS  Google Scholar 

  19. Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

    Article  CAS  Google Scholar 

  20. Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

    Article  Google Scholar 

  21. Low, J.; Cao, S. W.; Yu, J. G.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50, 10768–10777.

    Article  CAS  Google Scholar 

  22. Xiao, Y.; Zhu, Y. F.; Xiang, W.; Wu, Z. G.; Li, Y. C.; Lai, J.; Li, S.; Wang, E. H.; Yang, Z. G.; Xu, C. L. et al. Deciphering an abnormal layered-tunnel heterostructure induced by chemical substitution for the sodium oxide cathode. Angew. Chem., Int. Ed. 2020, 59, 1491–1495.

    Article  CAS  Google Scholar 

  23. Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 2020, 12, 2001763.

    Article  Google Scholar 

  24. Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

    Article  CAS  Google Scholar 

  25. Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 65, 6673–6681.

    Article  Google Scholar 

  26. Chao, Y. G.; Zhou, P.; Li, N.; Lai, J. P.; Yang, Y.; Zhang, Y. L.; Tang, Y. H.; Yang, W. X.; Du, Y. P.; Su, D. et al. Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv. Mater. 2019, 31, 1807226.

    Article  Google Scholar 

  27. Bao, Y. J.; Song, S. Q.; Yao, G. J.; Jiang, S. J. S-scheme photocatalytic systems. Sol. RRL 2021, 5, 2100118.

    Article  CAS  Google Scholar 

  28. Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

    Article  CAS  Google Scholar 

  29. Yan, P. F.; Ji, L.; Liu, X. P.; Guan, Q. H.; Guo, J. L.; Shen, Y. L.; Zhang, H. J.; Wei, W. F.; Cui, X. W.; Xu, Q. 2D amorphous-MoO3−x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy 2021, 86, 106139.

    Article  CAS  Google Scholar 

  30. Yang, X.; Gao, L.; Guo, Q.; Li, Y. J.; Ma, Y.; Yang, J.; Gong, C. Y.; Yi, C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res. 2020, 13, 2579–2594.

    Article  CAS  Google Scholar 

  31. Zhang, G. X.; Zhang, H. M.; Wang, R. F.; Liu, H. X.; He, Q. C.; Zhang, X. J.; Li, Y. J. Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity. J. Mater. Sci. Mater. Electron. 2021, 32, 7307–7318.

    Article  CAS  Google Scholar 

  32. Ran, J. R.; Guo, W. W.; Wang, H. L.; Zhu, B. C.; Yu, J. G.; Qiao, S. Z. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128.

    Article  Google Scholar 

  33. Jiang, J. Y.; Yan, P. F.; Zhou, Y. N.; Cheng, Z. F.; Cui, X. W.; Ge, Y. F.; Xu, Q. Interplanar growth of 2D non-van der Waals Co2N-based heterostructures for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 2002214.

    Article  CAS  Google Scholar 

  34. Jin, Z. Y.; Zhang, Q. T.; Hu, L.; Chen, J. Q.; Cheng, X.; Zeng, Y. J.; Ruan, S. C.; Ohno, T. Constructing hydrogen bond based melam/WO3 heterojunction with enhanced visible-light photocatalytic activity. Appl. Catal. B 2017, 205, 569–575.

    Article  CAS  Google Scholar 

  35. Ran, J. R.; Zhu, B. C.; Qiao, S. Z. Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2017, 56, 10373–10377.

    Article  CAS  Google Scholar 

  36. Hu, X. G.; Hou, P. X.; Wu, J. B.; Li, X.; Luan, J.; Liu, C.; Liu, G.; Cheng, H. M. High-efficiency and stable silicon heterojunction solar cells with lightly fluorinated single-wall carbon nanotube films. Nano Energy 2020, 69, 104442.

    Article  CAS  Google Scholar 

  37. Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K. W.; Nelson, C. A. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.

    Article  CAS  Google Scholar 

  38. Clarke, T. M.; Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 2010, 110, 6736–6767.

    Article  CAS  Google Scholar 

  39. Brédas, J. L.; Norton, J. E.; Cornil, J.; Coropceanu, V. Molecular understanding of organic solar cells: The challenges. Acc. Chem. Res 2009, 42, 1691–1699.

    Article  Google Scholar 

  40. Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2020, 11, 2002762.

    Article  Google Scholar 

  41. Beratan, D. N.; Betts, J. N.; Onuchic, J. N. Protein electron transfer rates set by the bridging secondary and tertiary structure. Science 1991, 252, 1285–1288.

    Article  CAS  Google Scholar 

  42. Niu, F. J.; Wang, D. G.; Li, F.; Liu, Y. M.; Shen, S. H.; Meyer, T. J. Hybrid photoelectrochemical water splitting systems: From interface design to system assembly. Adv. Energy Mater. 2020, 10, 1900399.

    Article  Google Scholar 

  43. Xu, W. W.; Tian, W.; Meng, L. X.; Cao, F. R.; Li, L. Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv. Energy Mater. 2021, 11, 2003500.

    Article  CAS  Google Scholar 

  44. Li, S. J.; Zhang, L. M.; Zhao, W. Q.; Yuan, S. H.; Yang, L.; Chen, X. Q.; Ge, P.; Sun, W.; Ji, X. B. Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Stor. Mater. 2020, 32, 477–496.

    Google Scholar 

  45. Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680.

    Article  CAS  Google Scholar 

  46. Zuo, L. J.; Gu, Z. W.; Ye, T.; Fu, W. F.; Wu, G.; Li, H. Y.; Chen, H. Z. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 2015, 137, 2674–2679.

    Article  CAS  Google Scholar 

  47. Bai, Y.; Chen, H. N.; Xiao, S.; Xue, Q. F.; Zhang, T.; Zhu, Z. L.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z. C. et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 2016, 26, 2950–2958.

    Article  CAS  Google Scholar 

  48. Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.

    Article  CAS  Google Scholar 

  49. Nguyen, G. D.; Tsai, H. Z.; Omrani, A. A.; Marangoni, T.; Wu, M.; Rizzo, D. J.; Rodgers, G. F.; Cloke, R. R.; Durr, R. A.; Sakai, Y. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017, 12, 1077–1082.

    Article  CAS  Google Scholar 

  50. Fang, L. B.; Lan, Z. Y.; Guan, W. H.; Zhou, P.; Bahlawane, N.; Sun, W. P.; Lu, Y. H.; Liang, C.; Yan, M.; Jiang, Y. Z. Heterointerface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Stor. Mater. 2019, 18, 107–113.

    Google Scholar 

  51. Jiang, Y.; Wei, M.; Feng, J. K.; Ma, Y. C.; Xiong, S. L. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 2016, 9, 1430–1438.

    Article  Google Scholar 

  52. Zhang, S. G.; Li, Y.; Zhu, H.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Duan, F.; Chen, M. Q.; Du, M. L. Understanding the role of nanoscale heterointerfaces in core/shell structures for water splitting: Covalent bonding interaction boosts the activity of binary transition-metal sulfides. ACS Appl. Mater. Interfaces 2020, 12, 6250–6261.

    Article  CAS  Google Scholar 

  53. Wang, X.; Raghupathy, R. K. M.; Querebillo, C. J.; Liao, Z. Q.; Li, D. Q.; Lin, K.; Hantusch, M.; Sofer, Z.; Li, B. H.; Zschech, E. et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 2021, 33, 2008752.

    Article  CAS  Google Scholar 

  54. Bian, J.; Zhang, Z. Q.; Feng, J. N.; Thangamuthu, M.; Yang, F.; Sun, L.; Li, Z. J.; Qu, Y.; Tang, D. Y.; Lin, Z. W. et al. Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst. Angew. Chem., Int. Ed. 2021, 60, 20906–20914.

    Article  CAS  Google Scholar 

  55. Xu, G. L.; Zhang, H. B.; Wei, J.; Zhang, H. X.; Wu, X.; Li, Y.; Li, C. S.; Zhang, J.; Ye, J. H. Integrating the g-C3N4 nanosheet with B-H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano 2018, 12, 5333–5340.

    Article  CAS  Google Scholar 

  56. Lian, Y. B.; Yang, W. J.; Zhang, C. F.; Sun, H.; Deng, Z.; Xu, W. J.; Song, L.; Ouyang, Z. W.; Wang, Z. X.; Guo, J. et al. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 286–294.

    Article  CAS  Google Scholar 

  57. Zhu, Y. Z.; Sokolowski, J.; Song, X. C.; He, Y. H.; Mei, Y.; Wu, G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.

    Article  CAS  Google Scholar 

  58. Chen, Y. G.; Zhao, S.; Wang, X.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhang, L. B.; Zhou, G. et al. Synergetic integration of Cu1.94S-ZnxCd1−xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 2016, 138, 4286–4289.

    Article  CAS  Google Scholar 

  59. Wang, Y. Z.; Zhang, Z. Y.; Mao, Y. C.; Wang, X. D. Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 2020, 13, 3993–4016.

    Article  CAS  Google Scholar 

  60. Zhang, S. Q.; Si, Y. M.; Li, B.; Yang, L. X.; Dai, W. L.; Luo, S. L. Atomic-level and modulated interfaces of photocatalyst heterostructure constructed by external defect-induced strategy: A critical review. Small 2021, 17, 2004980.

    Article  CAS  Google Scholar 

  61. Liu, Q. H.; Nian, G. D.; Yang, C. H.; Qu, S. X.; Suo, Z. G. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 2018, 9, 846.

    Article  Google Scholar 

  62. Kegel, J.; Povey, I. M.; Pemble, M. E. Zinc oxide for solar water splitting: A brief review of the material’s challenges and associated opportunities. Nano Energy 2018, 54, 409–428.

    Article  CAS  Google Scholar 

  63. Wen, Y.; He, P.; Yao, Y. Y.; Zhang, Y.; Cheng, R. Q.; Yin, L.; Li, N. N.; Li, J.; Wang, J. J.; Wang, Z. X. et al. Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater. 2020, 12, 1906874.

    Article  Google Scholar 

  64. Xu, H. X.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.

    Article  CAS  Google Scholar 

  65. Zhang, S. Q.; Liu, X.; Liu, C. B.; Luo, S. L.; Wang, L. L.; Cai, T.; Zeng, Y. X.; Yuan, J. L.; Dong, W. Y.; Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758.

    Article  CAS  Google Scholar 

  66. Wang, P. F.; Mao, Y. S.; Li, L. N.; Shen, Z. R.; Luo, X.; Wu, K. F.; An, P. F.; Wang, H. T.; Su, L. N.; Li, Y. et al. Unraveling the interfacial charge migration pathway at the atomic level in a highly efficient Z-scheme photocatalyst. Angew. Chem., Int. Ed. 2019, 58, 11329–11334.

    Article  CAS  Google Scholar 

  67. Mu, Y. F.; Zhang, W.; Dong, G. X.; Su, K.; Zhang, M.; Lu, T. B. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 2020, 16, 2002140.

    Article  CAS  Google Scholar 

  68. Zhou, Y. Y.; Sternlicht, H.; Padture, N. P. Transmission electron microscopy of halide perovskite materials and devices. Joule 2019, 1, 641–661.

    Article  Google Scholar 

  69. Song, K. P.; Liu, L. M.; Zhang, D. L.; Hautzinger, M. P.; Jin, S.; Han, Y. Atomic-resolution imaging of halide perovskites using electron microscopy. Adv. Energy Mater. 2020, 15, 1904006.

    Article  Google Scholar 

  70. Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

    Article  CAS  Google Scholar 

  71. Zhu, M. S.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J. Y.; Wang, X. C.; Majima, T. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: Black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 2017, 139, 13234–13242.

    Article  CAS  Google Scholar 

  72. Hungría, A. B.; Calvino, J. J.; Hernandez-Garrido, J. C. HAADF-STEM electron tomography in catalysis research. Top. Catal. 2019, 62, 808–821.

    Article  Google Scholar 

  73. Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 12, 2000872.

    Article  Google Scholar 

  74. Wang, P. F.; Zhan, S. H.; Xia, Y. G.; Ma, S. L.; Zhou, Q. X.; Li, Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B 2017, 207, 335–346.

    Article  CAS  Google Scholar 

  75. van Oversteeg, C. H.; Doan, H. Q.; de Groot, F. M. F.; Cuk, T. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 2017, 46, 102–125.

    Article  CAS  Google Scholar 

  76. Mo, S. L.; Zhou, P. P.; Li, C. X.; Liu, J. J.; Wang, F. Atomic interface engineering: Strawberry-like RuO2/C hybrids for efficient hydrogen evolution from ammonia borane and water. Int. J. Hydrog. Energy 2021, 46, 22397–22408.

    Article  CAS  Google Scholar 

  77. Li, P.; Zhao, G. Q.; Cui, P. X.; Cheng, N. Y.; Lao, M. M.; Xu, X.; Dou, S. X.; Sun, W. P. Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy 2021, 83, 105850.

    Article  CAS  Google Scholar 

  78. Mao, Y. S.; Wang, P. F.; Zhang, D. P.; Xia, Y. G.; Li, Y.; Zeng, W. L.; Zhan, S. H.; Crittenden, J. C. Accelerating FeIII-aqua complex reduction in an efficient solid-liquid-interfacial Fenton reaction over the Mn-CNH co-catalyst at near-neutral pH. Environ. Sci. Technol. 2021, 55, 13326–13334.

    CAS  Google Scholar 

  79. Marchetti, A.; Chen, J. E.; Pang, Z. F.; Li, S. H.; Ling, D. S.; Deng, F.; Kong, X. Q. Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR. Adv. Mater. 2017, 29, 1605895.

    Article  Google Scholar 

  80. Hu, Y. C.; Shim, Y.; Oh, J.; Park, S.; Park, S.; Ishii, Y. Synthesis of 13C-, 15N-labeled graphitic carbon nitrides and NMR-based evidence of hydrogen-bonding assisted two-dimensional assembly. Chem. Mater. 2017, 29, 5080–5089.

    Article  CAS  Google Scholar 

  81. Zhao, D.; Chen, C. C.; Wang, Y. F.; Ma, W. H.; Zhao, J. C.; Rajh, T.; Zang, L. Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: Structure, interaction, and interfacial electron transfer. Environ. Sci. Technol. 2008, 42, 308–314.

    Article  CAS  Google Scholar 

  82. Kubicki, D. J.; Stranks, S. D.; Grey, C. P.; Emsley, L. NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat. Rev. Chem. 2021, 5, 624–645.

    Article  CAS  Google Scholar 

  83. Folliet, N.; Roiland, C.; Bégu, S.; Aubert, A.; Mineva, T.; Goursot, A.; Selvaraj, K.; Duma, L.; Tielens, F.; Mauri, F. et al. Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations. J. Am. Chem. Soc. 2011, 133, 16815–16827.

    Article  CAS  Google Scholar 

  84. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

    Article  CAS  Google Scholar 

  85. Li, J.; Zhan, G. M.; Yu, Y.; Zhang, L. Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 2016, 7, 11480.

    Article  CAS  Google Scholar 

  86. Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.

    Article  CAS  Google Scholar 

  87. Wang, W. C.; Zhu, S.; Cao, Y. N.; Tao, Y.; Li, X.; Pan, D. L.; Phillips, D. L.; Zhang, D. Q.; Chen, M.; Li, G. S. et al. Edge-enriched ultrathin MoS2 embedded yolk-shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv. Funct. Mater. 2019, 29, 1901958.

    Article  Google Scholar 

  88. Li, C. M.; Du, Y. H.; Wang, D. P.; Yin, S. M.; Tu, W. G.; Chen, Z.; Kraft, M.; Chen, G.; Xu, R. Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 2017, 27, 1604328.

    Article  Google Scholar 

  89. Li, F.; Wang, D. K.; Xing, Q. J.; Zhou, G.; Liu, S. S.; Li, Y.; Zheng, L. L.; Ye, P.; Zou, J. P. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B 2019, 243, 621–628.

    Article  CAS  Google Scholar 

  90. Yuan, Y. J.; Shen, Z. K.; Song, S. X.; Guan, J.; Bao, L.; Pei, L.; Su, Y. B.; Wu, S. T.; Bai, W. F.; Yu, Z. T. et al. Co-P bonds as atomic-level charge transfer channel to boost photocatalytic H2 production of Co2P/black phosphorus nanosheets photocatalyst. ACS Catal. 2019, 9, 7801–7807.

    Article  CAS  Google Scholar 

  91. Campagnola, L.; Seeman, S. C.; Chartrand, T.; Kim, L.; Hoggarth, A.; Gamlin, C.; Ito, S.; Trinh, J.; Davoudian, P.; Radaelli, C. et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 2022, 375, eabj5861.

    Article  CAS  Google Scholar 

  92. Nelson, N.; Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 2004, 5, 971–982.

    Article  CAS  Google Scholar 

  93. Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.

    Article  Google Scholar 

  94. Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 1, 775–786.

    Article  Google Scholar 

  95. Liu, X.; Inagaki, S.; Gong, J. L. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem., Int. Ed. 2016, 55, 14924–14950.

    Article  CAS  Google Scholar 

  96. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

    Article  CAS  Google Scholar 

  97. Zhao, J. Z.; Ji, M. X.; Chen, H. L.; Weng, Y. X.; Zhong, J.; Li, Y. J.; Wang, S. Y.; Chen, Z. R.; Xia, J. X.; Li, H. M. Interfacial chemical bond modulated Bi19S27Br3/g-C3N4 Z-echeme heterojunction for enhanced photocatalytic CO2 conversion. Appl. Catal. B 2022, 307, 121162.

    Article  CAS  Google Scholar 

  98. Wang, D. K.; Huang, R. K.; Liu, W. J.; Sun, D. R.; Li, Z. H. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014, 4, 4254–4260.

    Article  CAS  Google Scholar 

  99. Sekizawa, K.; Maeda, K.; Domen, K.; Koike, K.; Ishitani, O. Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J. Am. Chem. Soc. 2013, 135, 4596–4599.

    Article  CAS  Google Scholar 

  100. Ou, M.; Tu, W. G.; Yin, S. M.; Xing, W. N.; Wu, S. Y.; Wang, H. J.; Wan, S. P.; Zhong, Q.; Xu, R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 13570–13574.

    Article  CAS  Google Scholar 

  101. Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685–3690.

    Article  CAS  Google Scholar 

  102. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

    Article  CAS  Google Scholar 

  103. Jia, X. Q.; Bai, X. Y.; Ji, Z. Z.; Li, Y.; Sun, Y.; Mi, X. Y.; Zhan, S. H. Insight into the effective removal of ciprofloxacin using a two-dimensional layered NiO/g-C3N4 composite in Fe-free photoelectro-Fenton system. Acta Phys. -Chim. Sin. 2020, 37, 2010042.

    Article  Google Scholar 

  104. Zhou, Z. R.; Shen, Z. R.; Cheng, Z. H.; Zhang, G.; Li, M. M.; Li, Y.; Zhan, S. H.; Crittenden, J. C. Mechanistic insights for efficient inactivation of antibiotic resistance genes: A synergistic interfacial adsorption and photocatalytic-oxidation process. Sci. Bull. 2020, 65, 2107–2119.

    Article  CAS  Google Scholar 

  105. Wang, P. F.; Zhou, Q. X.; Xia, Y. G.; Zhan, S. H.; Li, Y. Understanding the charge separation and transfer in mesoporous carbonate doped phase-junction TiO2 nanotubes for photocatalytic hydrogen production. Appl. Catal. B 2018, 225, 433–444.

    Article  CAS  Google Scholar 

  106. Peng, Y.; Lu, B. Z.; Wu, F.; Zhang, F. Q.; Lu, J. E.; Kang, X. W.; Ping, Y.; Chen, S. W. Point of anchor: Impacts on interfacial charge transfer of metal oxide nanoparticles. J. Am. Chem. Soc. 2018, 140, 15290–15299.

    Article  CAS  Google Scholar 

  107. Jiang, D. H.; Liu, Z. R.; Fu, L. J.; Yang, H. M. Interfacial chemical-bond-modulated charge transfer of heterostructures for improving photocatalytic performance. ACS Appl. Mater. Interfaces 2020, 12, 9872–9880.

    Article  CAS  Google Scholar 

  108. Furst, A. L.; Francis, M. B. Impedance-based detection of bacteria. Chem. Rev. 2019, 119, 700–726.

    Article  CAS  Google Scholar 

  109. Zhou, Z. R.; Shen, Z. R.; Song, C. L.; Li, M. M.; Li, H.; Zhan, S. H. Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. Water Res. 2021, 201, 117314.

    Article  CAS  Google Scholar 

  110. Jafry, H. R.; Liga, M. V.; Li, Q. L.; Barron, A. R. Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ. Sci. Technol. 2011, 45, 1563–1568.

    Article  CAS  Google Scholar 

  111. Xie, Z. J.; Peng, Y. P.; Yu, L.; Xing, C. Y.; Qiu, M.; Hu, J. Q.; Zhang, H. Solar-inspired water purification based on emerging 2D materials: Status and challenges. Sol. RRL 2020, 4, 1900400.

    Article  Google Scholar 

  112. Wang, W. J.; Li, G. Y.; An, T. C.; Chan, D. K. L.; Yu, J. C.; Wong, P. K. Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: The role of type I band alignment. Appl. Catal. B 2018, 238, 126–135.

    Article  CAS  Google Scholar 

  113. Guo, H.; Niu, C. G.; Yang, Y. Y.; Liang, C.; Niu, H. Y.; Liu, H. Y.; Li, L.; Tang, N. Interfacial Co-N bond bridged CoB/g-C3N4 Schottky junction with modulated charge transfer dynamics for highly efficient photocatalytic Staphylococcus aureus inactivation. Chem. Eng. J. 2021, 422, 130029.

    Article  CAS  Google Scholar 

  114. Shi, H. X.; Wang, C. J.; Zhao, Y. Y.; Liu, E. Z.; Fan, J.; Ji, Z. Highly efficient visible light driven photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8 composite. Appl. Catal. B 2019, 254, 403–413.

    Article  CAS  Google Scholar 

  115. Wang, M. J.; Nian, L. Y.; Cheng, Y. L.; Yuan, B.; Cheng, S. J.; Cao, C. J. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer. Chem. Eng. J. 2021, 426, 130832.

    Article  CAS  Google Scholar 

  116. Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487.

    Article  CAS  Google Scholar 

  117. Balakumar, V.; Kim, H.; Manivannan, R.; Kim, H.; Ryu, J. W.; Heo, G.; Son, Y. A. Ultrasound-assisted method to improve the structure of CeO2@polyprrole core-shell nanosphere and its photocatalytic reduction of hazardous Cr6+. Ultrason. Sonochem. 2019, 59, 104738.

    Article  CAS  Google Scholar 

  118. Qiu, J. H.; Zhang, X. F.; Zhang, X. G.; Feng, Y.; Li, Y. X.; Yang, L.; Lu, H. Q.; Yao, J. F. Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction. J. Hazard. Mater. 2018, 349, 234–241.

    Article  CAS  Google Scholar 

  119. Qin, H. Q.; Hu, T. J.; Zhai, Y. B.; Lu, N. Q.; Aliyeva, J. The improved methods of heavy metals removal by biosorbents: A review. Environ. Pollut. 2020, 258, 113777.

    Article  CAS  Google Scholar 

  120. Wang, S.; Li, G. S.; Huang, T. T.; Liu, C.; Li, X. B.; Zhang, Q.; Zou, Y. C.; Li, L. P. Exceptional high temperature interface chemistry: A creation of P-Sn bonds and enhanced photoreduction ability. Chem. Eng. J. 2022, 430, 132593.

    Article  CAS  Google Scholar 

  121. Cai, Q.; Liu, C. L.; Yin, C. C.; Huang, W.; Cui, L. F.; Shi, H. C.; Fang, X. Y.; Zhang, L.; Kang, S. F.; Wang, Y. G. Biotemplating synthesis of graphitic carbon-coated TiO2 and its application as efficient visible-light-driven photocatalyst for Cr6+ remove. ACS Sustain. Chem. Eng. 2017, 5, 3938–3944.

    Article  CAS  Google Scholar 

  122. Khamboonrueang, D.; Srirattanapibul, S.; Tang, I. M.; Thongmee, S. TiO2·rGO nanocomposite as a photo catalyst for the reduction of Cr6+. Mater. Res. Bull. 2018, 107, 236–241.

    Article  CAS  Google Scholar 

  123. Zuo, W. L.; Yu, Y. D.; Huang, H. Making waves: Microbe-photocatalyst hybrids may provide new opportunities for treating heavy metal polluted wastewater. Water Res. 2021, 195, 116984.

    Article  CAS  Google Scholar 

  124. Wang, L. J.; Karuturi, S.; Zan, L. Bi2S3-In2S3 heterostructures for efficient photoreduction of highly toxic Cr6+ enabled by facet-coupling and Z-scheme structure. Small 2021, 17, 2101833.

    Article  CAS  Google Scholar 

  125. Wang, W. J.; Niu, Q. Y.; Zeng, G. M.; Zhang, C.; Huang, D. L.; Shao, B. B.; Zhou, C. Y.; Yang, Y.; Liu, Y. X.; Guo, H. et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B 2020, 273, 119051.

    Article  CAS  Google Scholar 

  126. Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

    Article  CAS  Google Scholar 

  127. Cao, S. H.; Zhou, N.; Gao, F. H.; Chen, H.; Jiang, F. All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Appl. Catal. B 2017, 218, 600–610.

    Article  CAS  Google Scholar 

  128. Qiu, P. X.; Xu, C. M.; Zhou, N.; Chen, H.; Jiang, F. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation. Appl. Catal. B 2018, 221, 27–35.

    Article  CAS  Google Scholar 

  129. Shen, Z. K.; Cheng, M.; Yuan, Y. J.; Pei, L.; Zhong, J. S.; Guan, J.; Li, X. Y.; Li, Z. J.; Bao, L.; Zhang, X. F. et al. Identifying the role of interface chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni2P-black phosphorus photocatalysts. Appl. Catal. B 2021, 295, 120274.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Nos. 22076082 and 22006029), the Frontiers Science Center for New Organic Matter (No. 6318120), the Science and Technology Research Projects of Colleges and Universities in Hebei Province (No. ZD2020149), and the Tianjin Commission of Science and Technology as key technologies R&D projects (No. 21YFSNSN00250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Wang or Sihui Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Wang, P. & Zhan, S. Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis. Nano Res. 15, 10158–10170 (2022). https://doi.org/10.1007/s12274-022-4593-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4593-y

Keywords

Navigation