Skip to main content

Advertisement

Log in

Photocatalytic transition-metal-oxides-based p–n heterojunction materials: synthesis, sustainable energy and environmental applications, and perspectives

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In recent years, photocatalysis has gained particular attention due to its crucial potential applications in addressing many essential energy and environmental challenges. Considerable efforts have been devoted to developing photocatalysts to understand the fundamental processes and enhance photocatalytic efficiencies. The rate of photoinduced e–h+ reassembly is one of the difficulties encountered in semiconductor photocatalysis. Various alternative photosystems were designed to overcome this problem and thereby improve the efficiency of the heterojunction photocatalyst. Among the explored methods, the charge carrier separation using a built-in electric field attracts considerable attention as a new concept. The present review highlights the development of p–n heterojunctions to overcome the existing challenges in rigorously explored type-I, II, and III heterojunctions. Herein, reports on widely explored TiO2, ZnO, and various other transition metal oxides based p–n heterojunctions are extensively deliberated. This review pinpoints the benefits of constructing p–n junctions, including their impact on optical absorption, physical, and chemical properties over other n–n and p–p heterojunctions. The mechanistic route followed to construct effective p–n heterojunction and practical work carried out by generated internal electric field in isolating the charge carriers is also highlighted. Transition-metal-oxides based p–n heterojunction shows promising practical applications in various fields, including H2 evolution, CO2 reduction, overall water splitting, photo-reforming, and photodegradation of harmful pollutants. The various challenges and future perspectives for developing metal oxides-based p–n heterojunction materials are also summarized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

reproduced with permission from Elsevier (license No. 5084230607591) [74]

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

reproduced with permission from Elsevier (license No. 5084251359809) [82]

Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

reproduced with permission from Elsevier (license No. 5084280352949) [95]; d schematic illustration for the fabrication of Co3O4/ZnO@ZnS–x heterojunction, reprinted with permission from Elsevier (license No. 5084640693230) [96]

Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

reproduced with permission from Elsevier (license No. 5084680520168) [147]; c and d Total yield of CH4 production after 8 h of visible-light-driven CO2 photoreduction over the as-developed samples, reprinted with permission from Elsevier (license No. 5084681231992) [148]

Similar content being viewed by others

Abbreviations

CB:

Conduction band

DFT:

Density functional theory

e :

Electron

EHP:

Electron hole pairs

EDX:

Energy-dispersive X-ray spectroscopy

E f :

Fermi level

h+ :

Holes

∙OH:

Hydroxyl radical

MB:

Methylene blue

NIR:

Near infra-red

PS:

Photocatalytic semiconductor

PL:

Photoluminescence

RhB:

Rhodamine B dye

∙O2 :

Superoxide radicals

SPS:

Surface photovoltage spectrum

UV-DRS:

UV–Vis diffuse reflectance

VB:

Valence band

ɸ:

Work function

XRD:

X-Ray diffraction

XPS:

X-ray photoelectron spectroscopy

References

  1. Richter, R., Caillol, S.: Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. J. Photochem. Photobiol. C 12, 1–19 (2011)

    Article  Google Scholar 

  2. Low, J., Yu, J., Jaroniec, M., Wageh, S., Al-Ghamdi, A.A.: Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)

    Article  Google Scholar 

  3. Soni, V., Xia, C., Cheng, C.K., Nguyen, V.-H., Nguyen, D.L.T., Bajpai, A., Kim, S.Y., Van Le, Q., Khan, A.A.P., Singh, P.: Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion. Appl. Mater. Today 24, 101074 (2021)

    Article  Google Scholar 

  4. Raizada, P., Soni, V., Kumar, A., Singh, P., Khan, A.A.P., Asiri, A.M., Thakur, V.K., Nguyen, V.-H.: Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. J. Mater. 7, 388–418 (2020)

    Google Scholar 

  5. Soni, V., Raizada, P., Singh, P., Cuong, H.N., Rangabhashiyam, S., Saini, A., Saini, R.V., Van Le, Q., Nadda, A.K., Le, T.-T.: Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: a review. Environ. Res. 202, 111622 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. Soni, V., Raizada, P., Kumar, A., Hasija, V., Singal, S., Singh, P., Hosseini-Bandegharaei, A., Thakur, V.K., Nguyen, V.-H.: Indium sulfide-based photocatalysts for hydrogen production and water cleaning: a review. Environ. Chem. Lett. 19, 1–31 (2021)

    Article  CAS  Google Scholar 

  7. Yang, S., Wan, X., Wei, K., Ma, W., Wang, Z.: Silicon recycling and iron, nickel removal from diamond wire saw silicon powder waste: synergistic chlorination with CaO smelting treatment. Miner Eng. 169, 106966 (2021)

    Article  CAS  Google Scholar 

  8. Heng, W., Meng, W., Yongbing, T.: A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 13, 1–7 (2018)

    Article  Google Scholar 

  9. Guan, H., Huang, S., Ding, J., Tian, F., Xu, Q., Zhao, J.: Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 187, 122–134 (2020)

    Article  CAS  Google Scholar 

  10. Wang, Z., Lei, Q., Wang, Z., Yuan, H., Cao, L., Qin, N., Liu, J.: In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. J. Chem. Eng. 395, 125180 (2020)

    Article  CAS  Google Scholar 

  11. Cheng, J., Tan, Z., Xing, Y., Shen, Z., Zhang, Y., Liu, L., Liu, S.: Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. J. Mater. Chem. 9, 5787–5795 (2021)

    Article  CAS  Google Scholar 

  12. Liu, H., Li, X., Liu, X., Ma, Z., Yin, Z., Yang, W., Yu, Y.: Schiff-base-rich g-CxN4 supported PdAg nanowires as an efficient Mott-Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met. 40, 808–816 (2021)

    Article  CAS  Google Scholar 

  13. Hadipour, N.L., Ahmadi Peyghan, A., Soleymanabadi, H.: Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C 119, 6398–6404 (2015)

    Article  CAS  Google Scholar 

  14. Yu, Y., Zhao, Y., Qiao, Y., Feng, Y., Li, W., Fei, W.: Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity. J. Mater. Sci. Technol. 84, 10–15 (2021)

    Article  CAS  Google Scholar 

  15. Shandilya, P., Raizada, P., Sudhaik, A., Saini, A., Saini, R., Singh, P.: Metal and carbon quantum dot photocatalysts for water purification. Water Pollut Remed Photocatal Springer 57, 81–118 (2021)

    Article  Google Scholar 

  16. Li, Z., Shi, Y., Zhu, A., Zhao, Y., Wang, H., Binks, B.P., Wang, J.: Light-responsive, reversible emulsification and demulsification of oil-in-water pickering emulsions for catalysis. Angew. Chem. Int. Ed. 60, 3928–3933 (2021)

    Article  CAS  Google Scholar 

  17. Wang, R., Xie, H., Lai, X., Liu, J., Li, J., Qiu, G.: Visible light-enabled iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamide. Mol. Catal. 515, 111881 (2021)

    Article  CAS  Google Scholar 

  18. Zhang, K., Qiu, L., Tao, J., Zhong, X., Lin, Z., Wang, R., Liu, Z.: Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272. Hydrometallurgy 205, 105722 (2021)

    Article  CAS  Google Scholar 

  19. Subudhi, S., Mansingh, S., Tripathy, S.P., Mohanty, A., Mohapatra, P., Rath, D., Parida, K.: The fabrication of Au/Pd plasmonic alloys on UiO-66-NH2: an efficient visible light-induced photocatalyst towards the Suzuki Miyaura coupling reaction under ambient conditions. Catal. Sci. Technol. 9, 6585–6597 (2019)

    Article  CAS  Google Scholar 

  20. Guan, Q., Zeng, G., Song, J., Liu, C., Wang, Z., Wu, S.: Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process. J. Environ. Manage. 293, 112961 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. Hasija, V., Kumar, A., Sudhaik, A., Raizada, P., Singh, P., Van Le, Q., Le, T.T., Nguyen, V.-H.: Step-scheme heterojunction photocatalysts for solar energy, water splitting. CO2 conversion, and bacterial inactivation: a review. Environ. Chem. Lett. 19, 1–26 (2021)

    Article  Google Scholar 

  22. Raizada, P., Sharma, S., Kumar, A., Singh, P., Khan, A.A.P., Asiri, A.M.: Performance improvement strategies of CuWO4 photocatalyst for hydrogen generation and pollutant degradation. J. Environ. Chem. Eng. 8, 104230 (2020)

    Article  CAS  Google Scholar 

  23. Nguyen, V.-H., Nguyen, B.-S., Jin, Z., Shokouhimehr, M., Jang, H.W., Hu, C., Singh, P., Raizada, P., Peng, W., Lam, S.S.: Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. J. Chem. Eng. 402, 126184 (2020)

    Article  CAS  Google Scholar 

  24. Yang, R., Zhong, S., Zhang, L., Liu, B.: PW12/CN@ Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Sep. Purif. Technol. 235, 116270 (2020)

    Article  CAS  Google Scholar 

  25. Raizada, P., Khan, A.A.P., Singh, P.: Construction of carbon nanotube mediated Fe doped graphitic carbon nitride and Ag3VO4 based Z-scheme heterojunction for H2O2 assisted 2, 4 dimethyl phenol photodegradation. Sep. Purif. Technol. 247, 116957 (2020)

    Article  CAS  Google Scholar 

  26. Kumar, A., Raizada, P., Singh, P., Hosseini-Bandegharaei, A., Thakur, V.K.: Facile synthesis and extended visible light activity of oxygen and sulphur co-doped carbon nitride quantum dots modified Bi2MoO6 for phenol degradation. J. Photochem. Photobiol. A 397, 112588 (2020)

    Article  CAS  Google Scholar 

  27. Hasija, V., Raizada, P., Sudhaik, A., Sharma, K., Kumar, A., Singh, P., Jonnalagadda, S.B., Thakur, V.K.: Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl. Mater. Today 15, 494–524 (2019)

    Article  Google Scholar 

  28. Qiu, X., Zhang, Y., Zhu, Y., Long, C., Su, L., Liu, S., Tang, Z.: Applications of nanomaterials in asymmetric photocatalysis: recent progress, challenges, and opportunities. Adv. Mater. 33, 2001731 (2021)

    Article  CAS  Google Scholar 

  29. Zhong, Y., Peng, C., He, Z., Chen, D., Jia, H., Zhang, J., Ding, H., Wu, X.: Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catal. Sci. Technol. 11, 27–42 (2020)

    Article  Google Scholar 

  30. Shi, W., Liu, C., Li, M., Lin, X., Guo, F., Shi, J.: Fabrication of ternary Ag3PO4/Co3 (PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity. J. Hazard. Mater. 389, 121907 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. Xu, Q., Zhang, L., Cheng, B., Fan, J., Yu, J.: S-scheme heterojunction photocatalyst. Chem 6, 1543–1559 (2020)

    Article  CAS  Google Scholar 

  32. Hasija, V., Raizada, P., Hosseini-Bandegharaei, A., Singh, P., Nguyen, V.H.: Synthesis and photocatalytic activity of Ni–Fe layered double hydroxide modified sulphur doped graphitic carbon nitride (SGCN/Ni–Fe LDH) photocatalyst for 2, 4-dinitrophenol degradation. Top. Catal. 63, 1030–1045 (2020)

    Article  CAS  Google Scholar 

  33. Vega, A.A.: Development and evaluation of a composite photocatalyst for water treatmment processes. In: University of British Columbia (2009)

  34. Jang, J.S., Kim, H.G., Lee, J.S.: Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal. Today 185, 270–277 (2012)

    Article  CAS  Google Scholar 

  35. Afroz, K., Moniruddin, M., Bakranov, N., Kudaibergenov, S., Nuraje, N.: A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. J. Mater. Chem. A 6, 21696–21718 (2018)

    Article  CAS  Google Scholar 

  36. Marschall, R.: Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24, 2421–2440 (2014)

    Article  CAS  Google Scholar 

  37. Lu, R., Christianson, C., Kirkeminde, A., Ren, S., Wu, J.: Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors. Nano Lett. 12, 6244–6249 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Schuettfort, T., Nish, A., Nicholas, R.J.: Observation of a type II heterojunction in a highly ordered polymer− carbon nanotube nanohybrid structure. Nano Lett. 9, 3871–3876 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y., Lu, N., Luo, M., Fan, L., Zhao, K., Qu, J., Guan, J., Yuan, X.: Enhancement mechanism of fiddlehead-shaped TiO2-BiVO4 type II heterojunction in SPEC towards RhB degradation and detoxification. Appl. Surf. Sci. 463, 234–243 (2019)

    Article  CAS  Google Scholar 

  40. Paul, T., Das, D., Das, B.K., Sarkar, S., Maiti, S., Chattopadhyay, K.K.: CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst. J. Hazard. Mater. 380, 120855 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. Thewalt, M.L.W., Harrison, D.A., Reinhart, C.F., Wolk, J.A., Lafontaine, H.: Type II band alignment in Si1−x Gex/Si (001) quantum wells: the ubiquitous type I luminescence results from band bending. Phys. Rev. Lett. 79, 269 (1997)

    Article  CAS  Google Scholar 

  42. Platanias, L.C.: Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Wu, Z., Zhang, Y., Zheng, J., Lin, X., Chen, X., Huang, B., Wang, H., Huang, K., Li, S., Kang, J.: An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires. J. Mater. Chem. A 21, 6020–6026 (2011)

    Article  CAS  Google Scholar 

  44. Zeng, J., Xu, L., Luo, X., Peng, B., Ma, Z., Wang, L.-L., Yang, Y., Shuai, C.: A novel design of SiH/CeO2 (111) van der Waals type-II heterojunction for water splitting. Phys. Chem. Chem. Phys. 23, 2812–2818 (2021)

    Article  CAS  PubMed  Google Scholar 

  45. Lo, S.S., Mirkovic, T., Chuang, C.H., Burda, C., Scholes, G.D.: Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Adv. Mater. 23, 180–197 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y.: An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128–146 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. Lu, H., Hao, Q., Chen, T., Zhang, L., Chen, D., Ma, C., Yao, W., Zhu, Y.: A high-performance Bi2O3/Bi2SiO5 pn heterojunction photocatalyst induced by phase transition of Bi2O3. Appl. Catal. B 237, 59–67 (2018)

    Article  CAS  Google Scholar 

  48. Xie, T., Liu, Y., Wang, H., Wu, Z.: Layered MoSe2/Bi2WO6 composite with PN heterojunctions as a promising visible-light induced photocatalyst. Appl. Surf. Sci. 444, 320–329 (2018)

    Article  CAS  Google Scholar 

  49. Sakthivel, T., Venugopal, G., Durairaj, A., Vasanthkumar, S., Huang, X.J.: Utilization of the internal electric field in semiconductor photocatalysis: a short review. J. Ind. Eng. Chem. 72, 18–30 (2019)

    Article  CAS  Google Scholar 

  50. Yao, S., Xue, S., Shen, X.: Photocatalytic activity of cuboid WO3 rods loaded with AgCl nanoparticles under visible light irradiation. J. Nanosci. Nanotechnol. 17, 5423–5431 (2017)

    Article  CAS  Google Scholar 

  51. Li, X., Garlisi, C., Guan, Q., Anwer, S., Al-Ali, K., Palmisano, G., Zheng, L.: A review of material aspects in developing direct Z-scheme photocatalysts. Mater. Today 47, 75–107 (2021)

    Article  CAS  Google Scholar 

  52. Yang, H.: A short review on heterojunction photocatalysts: carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 142, 111406 (2021)

    Article  CAS  Google Scholar 

  53. Bai, S., Jiang, J., Zhang, Q., Xiong, Y.: Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44, 2893–2939 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., Wang, X.: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. Cao, J., Li, X., Lin, H., Chen, S., Fu, X.: In situ preparation of novel p–n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity. J. Hazard. Mater. 239, 316–324 (2012)

    Article  PubMed  Google Scholar 

  56. Lin, J., Shen, J., Wang, R., Cui, J., Zhou, W., Hu, P., Liu, D., Liu, H., Wang, J., Boughton, R.: Nano-p–n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity. J. Mater. Chem. A 21, 5106–5113 (2011)

    Article  CAS  Google Scholar 

  57. Peng, Y., Yan, M., Chen, Q.-G., Fan, C.-M., Zhou, H.-Y., Xu, A.-W.: Novel one-dimensional Bi2O3–Bi2WO6 p–n hierarchical heterojunction with enhanced photocatalytic activity. J. Mater. Chem. A 2, 8517–8524 (2014)

    Article  CAS  Google Scholar 

  58. Zhang, J., Zhu, Z., Feng, X.: Construction of two-dimensional MoS2/CdS p–n nanohybrids for highly efficient photocatalytic hydrogen evolution. J. Chem. Eur. 20, 10632–10635 (2014)

    Article  CAS  Google Scholar 

  59. Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., Mohamed, A.R.: Highly reactive 001 facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale 6, 1946–2008 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. Chen, C., Cai, W., Long, M., Zhou, B., Wu, Y., Wu, D., Feng, Y.: Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4, 6425–6432 (2010)

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, Z., Shao, C., Li, X., Wang, C., Zhang, M., Liu, Y.: Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2, 2915–2923 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. Palanivel, B., Mani, A.: Conversion of a Type-II to a Z-scheme heterojunction by intercalation of a 0D electron mediator between the integrative NiFe2O4/g-C3N4 composite nanoparticles: boosting the radical production for photo-fenton degradation. ACS Omega 5, 19747–19759 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, J., Xin, J., Shao, C., Li, X., Li, X., Liu, S., Liu, Y.: Direct Z-scheme heterostructure of p-CuAl2O4/n-Bi2WO6 composite nanofibers for efficient overall water splitting and photodegradation. J. Colloid Interface Sci. 550, 170–179 (2019)

    Article  CAS  PubMed  Google Scholar 

  64. Aguirre, M.E., Zhou, R., Eugene, A.J., Guzman, M.I., Grela, M.A.: Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion. Appl. Catal. B 217, 485–493 (2017)

    Article  CAS  Google Scholar 

  65. Marcolongo, D., Nocito, F., Ditaranto, N., Aresta, M., Dibenedetto, A.J.C.: Synthesis and characterization of pn junction ternary mixed oxides for photocatalytic coprocessing of CO2 and H2O. Catalysts 10, 980 (2020)

    Article  CAS  Google Scholar 

  66. Liu, W., Chen, S.F.: Visible-light activity evaluation of pn junction photocatalyst NiO/TiO2 prepared by sol-gel method. Adv. Mater. Res. Trans. Tech. Publ. 152, 441–449 (2011)

    Google Scholar 

  67. Mohammed, A.M., Mohtar, S.S., Aziz, F., Aziz, M., Ul-Hamid, A., Salleh, W.N.W., Yusof, N., Jaafar, J., Ismail, A.: Ultrafast degradation of Congo Red dye using a facile one-pot solvothermal synthesis of cuprous oxide/titanium dioxide and cuprous oxide/zinc oxide pn heterojunction photocatalyst. Mater. Sci. Semicond. Process 122, 105481 (2021)

    Article  CAS  Google Scholar 

  68. Prabhu, Y.T., Rao, V.N., Shankar, M.V., Sreedhar, B., Pal, U.: The facile hydrothermal synthesis of CuO@ ZnO heterojunction nanostructures for enhanced photocatalytic hydrogen evolution. New J. Chem. 43, 6794–6805 (2019)

    Article  CAS  Google Scholar 

  69. Kumar, R., El-Shishtawy, R.M., Barakat, M.: Synthesis and characterization of Ag-Ag2O/TiO2@polypyrrole heterojunction for enhanced photocatalytic degradation of methylene blue. Catalysts 6, 76 (2016)

    Article  Google Scholar 

  70. Zhang, X., Wang, Y., Liu, B., Sang, Y., Liu, H.: Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts. Appl. Catal. B: Environ. 202, 620–641 (2017)

    Article  CAS  Google Scholar 

  71. Chu, L., Li, M., Cui, P., Jiang, Y., Wan, Z., Dou, S.: The study of NiO/TiO2 photocatalytic activity for degradation of methylene orange. Energy Environ. Focus 3, 371–374 (2014)

    Article  Google Scholar 

  72. Lin, J., Shen, J., Wang, R., Cui, J., Zhou, W., Hu, P., Liu, D., Liu, H., Wang, J., Boughton, R.: Nano-p–n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity. J. Mater. Chem. 21, 5106–5113 (2011)

    Article  CAS  Google Scholar 

  73. Zhao, L., Cui, T., Li, Y., Wang, B., Han, J., Han, L., Liu, Z.: Efficient visible light photocatalytic activity of p–n junction CuO/TiO2 loaded on natural zeolite. RSC Adv. 5, 64495–64502 (2015)

    Article  CAS  Google Scholar 

  74. Zhao, Y., Huang, X., Tan, X., Yu, T., Li, X., Yang, L., Wang, S.: Fabrication of BiOBr nanosheets@TiO2 nanobelts p–n junction photocatalysts for enhanced visible-light activity. Appl. Surf. Sci. 365, 209–217 (2016)

    Article  CAS  Google Scholar 

  75. Wang, M., Hu, Y., Han, J., Guo, R., Xiong, H., Yin, Y.: TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. J. Mater. Chem. A 3, 20727–20735 (2015)

    Article  CAS  Google Scholar 

  76. Faisal, M., Harraz, F.A., Ismail, A.A., El-Toni, A.M., Al-Sayari, S., Al-Hajry, A., Al-Assiri, M.: Novel mesoporous NiO/TiO2 nanocomposites with enhanced photocatalytic activity under visible light illumination. Ceram. Int. 44, 7047–7056 (2018)

    Article  CAS  Google Scholar 

  77. Nair, S.B., Joseph, J.A., Babu, S., Shinoj, V., Remillard, S.K., Shaji, S., Philip, R.R.: Influence of p-n junction mechanism and alumina overlayer on the photocatalytic performance of TiO2 nanotubes. Nanotechnology 3, 275403 (2020)

    Article  Google Scholar 

  78. Wang, S., Huang, C.-Y., Pan, L., Chen, Y., Zhang, X., Zou, J.-J.: Controllable fabrication of homogeneous ZnO pn junction with enhanced charge separation for efficient photocatalysis. Catal. Today 335, 151–159 (2019)

    Article  CAS  Google Scholar 

  79. Karimi-Shamsabadi, M., Behpour, M., Babaheidari, A.K., Saberi, Z.: Efficiently enhancing photocatalytic activity of NiO-ZnO doped onto nanozeoliteX by synergistic effects of pn heterojunction, supporting and zeolite nanoparticles in photo-degradation of Eriochrome Black T and Methyl Orange. J. Photochem. Photobiol. A 346, 133–143 (2017)

    Article  CAS  Google Scholar 

  80. Pirhashemi, M., Habibi-Yangjeh, A.: Facile fabrication of novel ZnO/CoMoO4 nanocomposites: highly efficient visible-light-responsive photocatalysts in degradations of different contaminants. J. Photochem. Photobiol. A 363, 31–43 (2018)

    Article  CAS  Google Scholar 

  81. Han, D., Li, B., Yang, S., Wang, X., Gao, W., Si, Z., Zuo, Q., Li, Y., Li, Y., Duan, Q.: Engineering charge transfer characteristics in hierarchical Cu2S QDs@ ZnO Nanoneedles with p–n heterojunctions: towards highly efficient and recyclable photocatalysts. Nanomaterials 9, 16 (2019)

    Article  CAS  Google Scholar 

  82. Gao, M., You, L., Guo, L., Li, T.: Fabrication of a novel polyhedron-like WO3/Ag2CO3 pn junction photocatalyst with highly enhanced photocatalytic activity. J. Photochem. Photobiol. A 374, 206–217 (2019)

    Article  CAS  Google Scholar 

  83. Derikvandi, H., Nezamzadeh-Ejhieh, A.: Synergistic effect of pn heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J. Colloid Interface Sci. 490, 314–327 (2017)

    Article  CAS  PubMed  Google Scholar 

  84. Ida, S., Takashiba, A., Koga, S., Hagiwara, H., Ishihara, T.: Potential gradient and photocatalytic activity of an ultrathin p–n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 136, 1872–1878 (2014)

    Article  CAS  PubMed  Google Scholar 

  85. Swain, G., Sultana, S., Naik, B., Parida, K.: Coupling of crumpled-type novel MoS2 with CeO2 nanoparticles: a noble-metal-free p–n heterojunction composite for visible light photocatalytic H2 production. ACS Omega 2, 3745–3753 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, Z., Pan, J., Mei, J., Yu, Q., Wang, P., Wang, P., Wang, J., Song, C., Zheng, Y., Li, C.: Ternary Co3O4/CdS/SrTiO3 core-shell pn junctions toward enhanced photocatalytic hydrogen production activity. J. Environ. Chem. Eng. 9, 104895 (2021)

    Article  CAS  Google Scholar 

  87. Salari, H., Sadeghinia, M., Chemistry, P.A.: MOF-templated synthesis of nano Ag2O/ZnO/CuO heterostructure for photocatalysis. J. Photochem. Photobiol. A 376, 279–287 (2019)

    Article  CAS  Google Scholar 

  88. Chen, S., Yu, J., Zhang, J.: Enhanced photocatalytic CO2 reduction activity of MOF-derived ZnO/NiO porous hollow spheres. J. CO2 Util. 24, 548–554 (2018)

    Article  CAS  Google Scholar 

  89. Low, J., Zhang, L., Tong, T., Shen, B., Yu, J.: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266 (2018)

    Article  CAS  Google Scholar 

  90. Wang, P., Lu, X., Boyjoo, Y., Wei, X., Zhang, Y., Guo, D., Sun, S., Liu, J.: Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. J. Power Sources 451, 227756 (2020)

    Article  CAS  Google Scholar 

  91. Uddin, M.T., Nicolas, Y., Olivier, C., Jaegermann, W., Rockstroh, N., Junge, H., Toupance, T.: Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Phys. Chem. Chem. Phys. 19, 19279–19288 (2017)

    Article  CAS  PubMed  Google Scholar 

  92. Sinatra, L., LaGrow, A.P., Peng, W., Kirmani, A.R., Amassian, A., Idriss, H., Bakr, O.: A Au/Cu2O–TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction? J. Catal. 322, 109–117 (2015)

    Article  CAS  Google Scholar 

  93. Ren, X., Gao, P., Kong, X., Jiang, R., Yang, P., Chen, Y., Chi, Q., Li, B.J.: NiO/Ni/TiO2 nanocables with Schottky/pn heterojunctions and the improved photocatalytic performance in water splitting under visible light. J. Colloid Interface Sci. 530, 1–8 (2018)

    Article  CAS  PubMed  Google Scholar 

  94. Rawool, S.A., Pai, M.R., Banerjee, A.M., Arya, A., Ningthoujam, R., Tewari, R., Rao, R., Chalke, B., Ayyub, P., Tripathi, A.: pn Heterojunctions in NiO: TiO2 composites with type-II band alignment assisting sunlight driven photocatalytic H2 generation. Appl. Catal. B 221, 443–458 (2018)

    Article  CAS  Google Scholar 

  95. He, R., Liang, H., Li, C., Bai, J.: Enhanced photocatalytic hydrogen production over Co3O4@ g-C3N4 pn junction adhering on one-dimensional carbon fiber. Colloids Surf. A Physicochem. Eng. 586, 124200 (2020)

    Article  CAS  Google Scholar 

  96. Zhang, Q., Xiao, Y., Li, Y., Zhao, K., Deng, H., Lou, Y., Chen, J., Yu, H., Cheng, L.: Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4–decorated ZnO@ ZnS core-shell structures. J. Chem. Eng. 393, 124681 (2020)

    Article  CAS  Google Scholar 

  97. Das, S., Patnaik, S., Parida, K.: Fabrication of a Au-loaded CaFe2O4/CoAl LDH p–n junction based architecture with stoichiometric H2 & O2 generation and Cr (vi) reduction under visible light. Inorg. Chem. Front. 6, 94–109 (2019)

    Article  CAS  Google Scholar 

  98. Tahir, M., Tahir, B., Zakaria, Z.Y., Muhammad, A.: Enhanced photocatalytic carbon dioxide reforming of methane to fuels over nickel and montmorillonite supported TiO2 nanocomposite under UV-light using monolith photoreactor. J. Clean. Prod. 213, 451–461 (2019)

    Article  CAS  Google Scholar 

  99. Tahir, M., Amin, N.: Photo-induced CO2 reduction by hydrogen for selective CO evolution in a dynamic monolith photoreactor loaded with Ag-modified TiO2 nanocatalyst. Int. J. Hydrog. Energy 42, 15507–15522 (2017)

    Article  CAS  Google Scholar 

  100. Tahir, B., Tahir, M., Nawawi, M.: Highly stable 3D/2D WO3/g-C3N4 Z-scheme heterojunction for stimulating photocatalytic CO2 reduction by H2O/H2 to CO and CH4 under visible light. J. CO2 Util. 4, 101270 (2020)

    Article  Google Scholar 

  101. Beheshtian, J., Baei, M.T., Peyghan, A.A.: Theoretical study of CO adsorption on the surface of BN, AlN, BP and AlP nanotubes. Surf. Sci. 606, 981–985 (2012)

    Article  CAS  Google Scholar 

  102. Peyghan, A.A., Soltani, A., Pahlevani, A.A., Kanani, Y., Khajeh, S.: A first-principles study of the adsorption behavior of CO on Al-and Ga-doped single-walled BN nanotubes. Appl. Surf. Sci. 270, 25–32 (2013)

    Article  CAS  Google Scholar 

  103. Beheshtian, J., Peyghan, A.A., Bagheri, Z.: Selective function of Al12N12 nano-cage towards NO and CO molecules. Comput. Mater. Sci. 62, 71–74 (2012)

    Article  CAS  Google Scholar 

  104. Beheshtian, J., Peyghan, A.A., Bagheri, Z., Kamfiroozi, M.: Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct. Chem. 23, 1567–1572 (2012)

    Article  CAS  Google Scholar 

  105. Pashangpour, M., Peyghan, A.A.: Adsorption of carbon monoxide on the pristine, B-and Al-doped C3N nanosheets. J. Mol. Model. 21, 1–7 (2015)

    Article  CAS  Google Scholar 

  106. Peyghan, A.A., Rastegar, S.F., Bagheri, Z.: Selective detection of F2 in the presence of CO, N2, O2, and H2 molecules using a ZnO nanocluster. Monatsh. Chem. 146, 1233–1239 (2015)

    Article  CAS  Google Scholar 

  107. Li, K., Peng, B., Peng, T.: Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6, 7485–7527 (2016)

    Article  CAS  Google Scholar 

  108. Wang, S.-Q., Zhang, X.-Y., Dao, X.-Y., Cheng, X.-M., Sun, W.-Y.: Cu2O@ Cu@ UiO-66-NH2 ternary nanocubes for photocatalytic CO2 reduction. ACS Appl. Nano Mater. 3, 10437–10445 (2020)

    Article  CAS  Google Scholar 

  109. Lee, J.H., Kim, S.-I., Park, S.-M., Kang, M.: A pn heterojunction NiS-sensitized TiO2 photocatalytic system for efficient photoreduction of carbon dioxide to methane. Ceram. Int. 43, 1768–1774 (2017)

    Article  CAS  Google Scholar 

  110. Zhao, B., Huang, Y., Liu, D., Yu, Y., Zhang, B.: Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme pn junction. Sci. China Chem. 63, 28–34 (2020)

    Article  CAS  Google Scholar 

  111. Ku, Y., Lin, C.-N., Hou, W.-M.: Characterization of coupled NiO/TiO2 photocatalyst for the photocatalytic reduction of Cr (VI) in aqueous solution. J. Mol. Catal. A Chem. 349, 20–27 (2011)

    Article  CAS  Google Scholar 

  112. Sarkar, D., Ghosh, C.K., Mukherjee, S., Chattopadhyay, K.K.: Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces 5, 331–337 (2013)

    Article  CAS  PubMed  Google Scholar 

  113. Dong, C., Xiao, X., Chen, G., Guan, H., Wang, Y.: Synthesis and photocatalytic degradation of methylene blue over pn junction Co3O4/ZnO core/shell nanorods. Mater. Chem. Phys. 155, 1–8 (2015)

    Article  CAS  Google Scholar 

  114. Reda, G.M., Fan, H., Tian, H.: Room-temperature solid state synthesis of Co3O4/ZnO p–n heterostructure and its photocatalytic activity. Adv. Powder Technol. 28, 953–963 (2017)

    Article  Google Scholar 

  115. Harish, S., Archana, J., Sabarinathan, M., Navaneethan, M., Nisha, K., Ponnusamy, G.S., Muthamizhchelvan, C., Ikeda, H., Aswal, D., Hayakawa, Y.: Controlled structural and compositional characteristic of visible light active ZnO/CuO photocatalyst for the degradation of organic pollutant. Appl. Surf. Sci. 418, 103–112 (2017)

    Article  CAS  Google Scholar 

  116. Chen, S., Zhao, W., Liu, W., Zhang, S.: Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2. Appl. Surf. Sci. 255, 2478–2484 (2008)

    Article  CAS  Google Scholar 

  117. Wang, S., Wang, F., Su, Z., Wang, X., Han, Y., Zhang, L., Xiang, J., Du, W., Tang, N.: Controllable fabrication of heterogeneous p-TiO2 QDs@ g-C3N4 pn junction for efficient photocatalysis. Catalysts 9, 439 (2019)

    Article  Google Scholar 

  118. Chen, J.-L., Xie, S.-Y., Yue, L.-J., Gong, F.-L., Zhang, Y.: Facile synthesis of Cu2O/TiO2 (P25) composites with enhanced photocatalytic H2 evolution activity. J. Mater. Sci. Mater. Electron. 32, 18900–18911 (2021)

    Article  CAS  Google Scholar 

  119. Cheng, W.Y., Yu, T.H., Chao, K.J., Lu, S.Y.: Cu2O-decorated mesoporous TiO2 beads as a highly efficient photocatalyst for hydrogen production. Chem. Cat. Chem. 6, 293–300 (2014)

    CAS  Google Scholar 

  120. Iqbal, F., Mumtaz, A., Shahabuddin, S., Abd Mutalib, M.I., Shaharun, M.S., Nguyen, T.D., Khan, M.R., Abdullah, B.: Biotechnology, photocatalytic reduction of CO2 to methanol over ZnFe2O4/TiO2 (p–n) heterojunctions under visible light irradiation. J. Chem. Technol. 95, 2208–2221 (2020)

    CAS  Google Scholar 

  121. Yu, J., Wang, W., Cheng, B.: Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p–n junction NiO/TiO2 photocatalyst. Chem. Asian J. 5, 2499–2506 (2010)

    Article  CAS  PubMed  Google Scholar 

  122. Lahmar, H., Benamira, M., Akika, F., Trari, M.: Solids, Reduction of chromium (VI) on the hetero-system CuBi2O4/TiO2 under solar light. J Phys. Chem. Solids 110, 254–259 (2017)

    Article  CAS  Google Scholar 

  123. Shifu, C., Sujuan, Z., Wei, L., Wei, Z.: Study on the photocatalytic activity of p–n junction photocatalyst Cu2O/TiO2. J. Nanosci. Nanotechnol. 9, 4397–4403 (2009)

    Article  PubMed  Google Scholar 

  124. Wang, M., Han, J., Hu, Y., Guo, R., Yin, Y.: Carbon-incorporated NiO/TiO2 mesoporous shells with p–n heterojunctions for efficient visible light photocatalysis. ACS Appl. Mater. Interfaces 8, 29511–29521 (2016)

    Article  CAS  PubMed  Google Scholar 

  125. Tran, V.A., Phung, T.K., Vo, T.K., Nguyen, T.T., Nguyen, T.A.N., Viet, D.Q., Hieu, V.Q., Vo, T.: Solar-light-driven photocatalytic degradation of methyl orange dye over Co3O4-ZnO nanoparticles. Mater. Lett. 284, 128902 (2021)

    Article  Google Scholar 

  126. Shifu, C., Wei, Z., Wei, L., Sujuan, Z.: Preparation, characterization and activity evaluation of p–n junction photocatalyst p-NiO/n-ZnO. J. Sol-Gel Sci. Technol. 50, 387–396 (2009)

    Article  Google Scholar 

  127. Shifu, C., Wei, Z., Wei, L., Huaye, Z., Xiaoling, Y.: Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-ZnO. J. Chem. Eng. 155, 466–473 (2009)

    Article  Google Scholar 

  128. Lamba, R., Umar, A., Mehta, S., Kansal, S.K.: Enhanced visible light driven photocatalytic application of Ag2O decorated ZnO nanorods heterostructures. Sep. Purif. Technol. 183, 341–349 (2017)

    Article  CAS  Google Scholar 

  129. Kaur, R., Suresh, M., López-Vidrier, J., Gutsch, S., Weiss, C., Prescher, M., Kirste, L., Singh, R., Pal, B., Zacharias, M.: In situ approach to fabricate heterojunction p–n CuO–ZnO nanostructures for efficient photocatalytic reactions. New J. Chem. 44, 19742–19752 (2020)

    Article  CAS  Google Scholar 

  130. Kumar, P.S., Selvakumar, M., Babu, S.G., Induja, S., Karuthapandian, S.: CuO/ZnO nanorods: an affordable efficient pn heterojunction and morphology dependent photocatalytic activity against organic contaminants. J. Alloys Compd. 701, 562–573 (2017)

    Article  Google Scholar 

  131. Li, M., Zhang, S., Li, L., Han, J., Zhu, X., Ge, Q., Wang, H.: Construction of highly active and selective polydopamine modified hollow ZnO/Co3O4 pn heterojunction catalyst for photocatalytic CO2 reduction. ACS Sustain. J. Chem. Eng. 8, 11465–11476 (2020)

    Article  CAS  Google Scholar 

  132. Taraka, T.P.Y., Gautam, A., Jain, S.L., Bojja, S., Pal, U.: Controlled addition of Cu/Zn in hierarchical CuO/ZnO pn heterojunction photocatalyst for high photoreduction of CO2 to MeOH. J. CO2 Util. 31, 207–214 (2019)

    Article  Google Scholar 

  133. Karamian, E., Sharifnia, S.: Enhanced visible light photocatalytic activity of BiFeO3-ZnO pn heterojunction for CO2 reduction. Mater. Sci. Eng. B 238, 142–148 (2018)

    Article  Google Scholar 

  134. Zhang, Y.-H., Cai, X.-L., Li, Y.-L., Liu, M.-M., Ding, C.-L., Chen, J.-L., Fang, S.-M.: Facile synthesis of hollow p-Cu2O/n-ZnO microspheres with enhanced photocatalytic H2 production. Chem. Phys. Lett. 734, 136748 (2019)

    Article  CAS  Google Scholar 

  135. Shifu, C., Wei, Z., Wei, L., Huaye, Z., Xiaoling, Y., Yinghao, C.: Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation. J. Hazard. Mater. 172, 1415–1423 (2009)

    Article  PubMed  Google Scholar 

  136. Wen, X.-J., Zhang, C., Niu, C.-G., Zhang, L., Zeng, G.-M., Zhang, X.-G.: Highly enhanced visible light photocatalytic activity of CeO2 through fabricating a novel p–n junction BiOBr/CeO2. Catal. Commun. 90, 51–55 (2017)

    Article  CAS  Google Scholar 

  137. Li, J., Cui, M., Guo, Z., Liu, Z., Zhu, Z.: Preparation of p–n junction BiVO4/Ag2O heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Mater. Lett. 151, 75–78 (2015)

    Article  CAS  Google Scholar 

  138. Tang, Y., Zhang, M., Wu, Z., Chen, Z., Liu, C., Lin, Y., Chen, F.: Synthesis and photocatalytic activity of p–n junction CeO2/Co3O4 photocatalyst for the removal of various dyes from wastewater. Mater. Res. Express 5, 045045 (2018)

    Article  Google Scholar 

  139. Wang, W., Wang, J., Wang, Z., Wei, X., Liu, L., Ren, Q., Gao, W., Liang, Y., Shi, H.: p–n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans. 43, 6735–6743 (2014)

    Article  CAS  PubMed  Google Scholar 

  140. Han, Y., Liang, Z., Dang, H., Dong, X.: Extremely high photocatalytic H2 evolution of novel Co3O4/Cd0.9Zn0.1S p–n heterojunction photocatalyst under visible light irradiation. J Taiwan Inst. Chem. Eng. 87, 196–203 (2018)

    Article  CAS  Google Scholar 

  141. Huang, Q.-Z., Wang, J.-C., Ye, L.-Q., Zhang, Q., Yao, H.-C., Li, Z.: A novel p–n heterojunction Mn0.25Cd0.75S/Co3O4 for highly efficient photocatalytic H2 evolution under visible light irradiation. J. Taiwan Inst. Chem. Eng. 80, 570–577 (2017)

    Article  CAS  Google Scholar 

  142. Zhang, D., Tang, Y., Qiu, X., Yin, J., Su, C., Pu, X.: Compounds, Use of synergistic effects of the co-catalyst, pn heterojunction, and porous structure for improvement of visible-light photocatalytic H2 evolution in porous Ni2O3/Mn0.2Cd0.8S/Cu3P@ Cu2S. J. Alloys Compd. 845, 155569 (2020)

    Article  CAS  Google Scholar 

  143. Li, Y., Zhu, S., Kong, X., Liang, Y., Li, Z., Wu, S., Chang, C., Luo, S., Cui, Z.: In situ synthesis of a novel Mn3O4/g-C3N4 pn heterostructure photocatalyst for water splitting. J. Colloid Interface Sci. 586, 778–784 (2021)

    Article  CAS  PubMed  Google Scholar 

  144. Xie, J., Guo, N., Liu, A., Cao, Y., Hu, J., Jia, D.: Simple solid-state synthesis of BiOCl/Bi2O2CO3 heterojunction and its excellent photocatalytic degradation of RhB. J. Alloys Compd. 784, 377–385 (2019)

    Article  CAS  Google Scholar 

  145. Liang, S., He, M., Guo, J., Yue, J., Pu, X., Ge, B., Li, W.: Fabrication and characterization of BiOBr: Yb3+, Er3+/g-C3N4 pn junction photocatalysts with enhanced visible-NIR-light-driven photoactivities. Sep. Purif. Technol. 206, 69–79 (2018)

    Article  CAS  Google Scholar 

  146. Gong, H., Wang, G., Li, H., Jin, Z., Guo, Q.: Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed pn heterojunction for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 45, 26733–26745 (2020)

    Article  CAS  Google Scholar 

  147. Tian, N., Huang, H., Wang, S., Zhang, T., Du, X., Zhang, Y.: Facet-charge-induced coupling dependent interfacial photocharge separation: a case of BiOI/g-C3N4 pn junction. Appl. Catal. B 267, 118697 (2020)

    Article  CAS  Google Scholar 

  148. Kong, X.Y., Lee, W.Q., Mohamed, A.R., Chai, S.-P.: Effective steering of charge flow through synergistic inducing oxygen vacancy defects and pn heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: towards superior photocatalytic CO2 reduction activity. J. Chem. Eng. 372, 1183–1193 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Quyet Van Le was supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (grant number 2020H1D3A1A04081409).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Van-Huy Nguyen or Pankaj Raizada.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, V., Singh, P., Khan, A.A.P. et al. Photocatalytic transition-metal-oxides-based p–n heterojunction materials: synthesis, sustainable energy and environmental applications, and perspectives. J Nanostruct Chem 13, 129–166 (2023). https://doi.org/10.1007/s40097-021-00462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00462-1

Keywords

Navigation