Skip to main content
Log in

Whisker of biphasic calcium phosphate ceramics: Osteo-immunomodulatory behaviors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Immune systems play a critical role in the regulation of bone formation and homeostasis, which arouses a growing interest in the development of biomaterials that can modulate both immune response and osteogenesis. In this study, biphasic calcium phosphate (BCP) ceramics were modified with different whiskered surface, and their effects on macrophage polarization and functional status were investigated. The results showed that compared to BCP-W ceramics with long and solid whiskers, BCP-HW ceramics with short and hollow whiskers surface were conducive to protein adsorption and macrophage elongation. Furthermore, BCP-HW ceramics down-regulated the expression of M1 macrophage markers (II1β, Tnfα, and iNos), promoted the expression of M2 macrophage markers (Il10 and Arg) and growth factors (Tgfβl and Bmp2), which might be attributed to the differential integrin expression regulated by different whisker structures. The conditioned medium derived from the supernatant of macrophage/whiskered ceramic co-culture was further used to culture MC3T3-E1 pre-osteoblasts to evaluate the effects of whiskered ceramic-mediated macrophage secretion on osteogenesis in vitro. Compared with BCP-W ones, the secretion pattern induced by BCP-HW ceramics could promote the expression of bone markers in pre-osteoblasts, which might due to the activation of intracellular signaling cascades like BMP/Smad and TGF-β/Smad signaling pathways. A murine intramuscular implantation model suggested that after implantation for 1, 2, and 3 weeks, BCP-HW ceramics drove the switch of macrophages to ARG+ wound-healing M2 phenotype, while BCP-W ceramics increased the proportion of iNOS+ M1 inflammatory macrophages. At 2 months, only BCP-HW could induce ectopic bone formation. Taken together, these results indicated that BCP ceramics with hollow whiskers were capable of creating a proper inflammatory microenvironment to induce bone formation. These whiskered BCP ceramics with good osteo-immunomodulatory capacity hold promise in serving as bone grafts to achieve desired bone repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takayanagi, H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7, 292–304.

    Article  CAS  Google Scholar 

  2. Arron, J. R.; Choi, Y. Bone versus immune system. Nature 2000, 408, 535–536.

    Article  CAS  Google Scholar 

  3. Nakashima, T.; Takayanagi, H. Osteoimmunology: Crosstalk between the immune and bone systems. J. Clin. Immunol. 2009, 29, 555–567.

    Article  Google Scholar 

  4. Walsh, M. C.; Kim, N.; Kadono, Y.; Rho, J.; Lee, S. Y.; Lorenzo, J.; Choi, Y. Osteoimmunology: Interplay between the immune system and bone metabolism. Ann. Rev. Immunol. 2006, 24, 33–63.

    Article  CAS  Google Scholar 

  5. Claes, L.; Recknagel, S.; Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 2012, 8, 133–143.

    Article  CAS  Google Scholar 

  6. Sridharan, R.; Cameron, A. R.; Kelly, D. J.; Kearney, C. J.; O’Brien, F. J. Biomaterial based modulation of macrophage polarization: A review and suggested design principles. Mater. Today 2015, 18, 313–325.

    Article  CAS  Google Scholar 

  7. Wang, M. L.; Chen, F. Y.; Wang, J.; Chen, X. N.; Liang, J.; Yang, X.; Zhu, X. D.; Fan, Y. J.; Zhang, X. D. Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells. J. Mater. Chem. B 2018, 6, 4765–4774.

    Article  CAS  Google Scholar 

  8. Koh, T. J.; DiPietro, L. A. Inflammation and wound healing: The role of the macrophage. Expert Rev. Mol. Med. 2011, 13, e23.

    Article  Google Scholar 

  9. Batoon, L.; Millard, S. M.; Wullschleger, M. E.; Preda, C.; Wu, A. C. K.; Kaur, S.; Tseng, H. W.; Hume, D. A.; Levesque, J. P.; Raggatt, L. J. et al. CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials 2019, 196, 51–66.

    Article  CAS  Google Scholar 

  10. Mills, C. D.; Kincaid, K.; Alt, J. M.; Heilman, M. J.; Hill, A. M. Pillars article: M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 2000, 164, 6166–6173.

    Article  CAS  Google Scholar 

  11. Brown, B. N.; Valentin, J. E.; Stewart-Akers, A. M.; McCabe, G. P.; Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009, 30, 1482–1491.

    Article  CAS  Google Scholar 

  12. Brown, B. N.; Londono, R.; Tottey, S.; Zhang, L.; Kukla, K. A.; Wolf, M. T.; Daly, K. A.; Reing, J. E.; Badylak, S. F. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012, 8, 978–987.

    Article  CAS  Google Scholar 

  13. Lau, S. K.; Chu, P. G.; Weiss, L. M. CD163: A specific marker of macrophages in paraffin-embedded tissue samples. Am. J. Clin. Pathol. 2004, 122, 794–801.

    Article  Google Scholar 

  14. Vasconcelos, D. P.; Costa, M.; Amaral, I. F.; Barbosa, M. A.; Águas, A. P.; Barbosa, J. N. Development of an immunomodulatory biomaterial: Using resolvin D1 to modulate inflammation. Biomaterials 2015, 53, 566–573.

    Article  CAS  Google Scholar 

  15. Hotchkiss, K. M.; Reddy, G. B.; Hyzy, S. L.; Schwartz, Z.; Boyan, B. D.; Olivares-Navarrete, R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016, 31, 425–434.

    Article  CAS  Google Scholar 

  16. Paul, N. E.; Skazik, C.; Harwardt, M.; Bartneck, M.; Denecke, B.; Klee, D.; Salber, J.; Zwadlo-Klarwasser, G. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 2008, 29, 4056–4064.

    Article  CAS  Google Scholar 

  17. Ma, Q. L.; Zhao, L. Z.; Liu, R. R.; Jin, B. Q.; Song, W.; Wang, Y.; Zhang, Y. S.; Chen, L. H.; Zhang, Y. M. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 2014, 35, 9853–9867.

    Article  CAS  Google Scholar 

  18. Hong, Y. L.; Fan, H. S.; Li, B.; Guo, B.; Liu, M.; Zhang, X. D. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater. Sci. Eng. R Rep. 2010, 70, 225–242.

    Article  Google Scholar 

  19. Zhi, W.; Wang, X. H.; Sun, D.; Chen, T. J.; Yuan, B.; Li, X. F.; Chen, X. N.; Wang, J. X.; Xie, Z.; Zhu, X. D. et al. Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioact. Mater. 2022, 11, 240–253.

    Article  CAS  Google Scholar 

  20. Kuo, S. W.; Lin, H. I.; Ho, J. H. C.; Shih, Y. R. V.; Chen, H. F.; Yen, T. J.; Lee, O. K. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials 2012, 33, 5013–5022.

    Article  CAS  Google Scholar 

  21. Sjöström, T.; Dalby, M. J.; Hart, A.; Tare, R.; Oreffo, R. O. C.; Su, B. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater. 2009, 5, 1433–1441.

    Article  Google Scholar 

  22. Myllymaa, S.; Kaivosoja, E.; Myllymaa, K.; Sillat, T.; Korhonen, H.; Lappalainen, R.; Konttinen, Y. T. Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon. J. Mater. Sci. Mater. Med. 2010, 21, 329–341.

    Article  CAS  Google Scholar 

  23. Krishna, L.; Dhamodaran, K.; Jayadev, C.; Chatterjee, K.; Shetty, R.; Khora, S. S.; Das, D. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell. Res. Ther. 2016, 7, 188.

    Article  Google Scholar 

  24. Behnamghader, A.; Bagheri, N.; Raissi, B.; Moztarzadeh, F. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass. J. Mater. Sci. Mater. Med. 2008, 19, 197–201.

    Article  CAS  Google Scholar 

  25. Gonçalves, G.; Cruz, S. M. A.; Ramalho, A.; Grácio, J.; Marques, P. A. A. P. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale 2012, 4, 2937–2945.

    Article  Google Scholar 

  26. Wang, Y. Y.; Wang, M. L.; Chen, F. Y.; Feng, C.; Chen, X. N.; Li, X. F.; Xiao, Y. M.; Zhang, X. D. Enhancing mechanical and biological properties of biphasic calcium phosphate ceramics by adding calcium oxide. J. Am. Ceram. Soc. 2021, 104, 548–563.

    Article  CAS  Google Scholar 

  27. Deng, Y. L.; Liu, M. J.; Chen, X. N.; Wang, M. L.; Li, X. F.; Xiao, Y. M.; Zhang, X. D. Enhanced osteoinductivity of porous biphasic calcium phosphate ceramic beads with high content of strontium-incorporated calcium-deficient hydroxyapatite. J. Mater. Chem. B 2018, 6, 6572–6584.

    Article  CAS  Google Scholar 

  28. Li, X. F.; Wang, M. L.; Deng, Y. L.; Chen, X. N.; Xiao, Y. M.; Zhang, X. D. Fabrication and properties of Ca-P bioceramic spherical granules with interconnected porous structure. ACS Biomater. Sci. Eng. 2017, 3, 1557–1566.

    Article  CAS  Google Scholar 

  29. Chen, X. N.; Wang, M. L.; Chen, F. Y.; Wang, J.; Li, X. F.; Liang, J.; Fan, Y. J.; Xiao, Y. M.; Zhang, X. D. Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater. 2020, 103, 318–332.

    Article  CAS  Google Scholar 

  30. Li, X. F.; Song, T.; Chen, X. N.; Wang, M. L.; Yang, X.; Xiao, Y. M.; Zhang, X. D. Osteoinductivity of porous biphasic calcium phosphate ceramic spheres with nanocrystalline and their efficacy in guiding bone regeneration. ACS Appl. Mater. Interfaces 2019, 11, 3722–3736.

    Article  CAS  Google Scholar 

  31. Feng, C.; Wu, Y. H.; Cao, Q. L.; Li, X. F.; Zhu, X. D.; Zhang, X. D. Effect of hydrothermal media on the in-situ whisker growth on biphasic calcium phosphate ceramics. Int. J. Nanomed. 2021, 16, 147–159.

    Article  Google Scholar 

  32. Wang, J.; Chen, X. N.; Guo, B.; Yang, X.; Zhou, Y.; Zhu, X. D.; Zhang, K.; Fan, Y. J.; Tu, C. Q.; Zhang, X. D. A serum protein adsorption profile on BCP ceramics and influence of the elevated adsorption of adhesive proteins on the behaviour of MSCs. J. Mater. Chem. B 2018, 6, 7383–7395.

    Article  CAS  Google Scholar 

  33. Battiston, K. G.; Labow, R. S.; Santerre, J. P. Protein binding mediation of biomaterial-dependent monocyte activation on a degradable polar hydrophobic ionic polyurethane. Biomaterials 2012, 33, 8316–8328.

    Article  CAS  Google Scholar 

  34. Wang, J.; Su, Y. Y.; Xu, L. Z.; Li, D. Y. Micro-patterned surface construction on BCP ceramics and the regulation on inflammation-involved osteogenic differentiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111220.

    Article  CAS  Google Scholar 

  35. McWhorter, F. Y.; Wang, T. T.; Nguyen, P.; Chung, T.; Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 2013, 110, 17253–17258.

    Article  CAS  Google Scholar 

  36. Chen, Z. T.; Klein, T.; Murray, R. Z.; Crawford, R.; Chang, J.; Wu, C. T.; Xiao, Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304–321.

    Article  CAS  Google Scholar 

  37. Rostam, H. M.; Reynolds, P. M.; Alexander, M. R.; Gadegaard, N.; Ghaemmaghami, A. M. Image based machine learning for identification of macrophage subsets. Sci. Rep. 2017, 7, 3521.

    Article  Google Scholar 

  38. Shayan, M.; Padmanabhan, J.; Morris, A. H.; Cheung, B.; Smith, R.; Schroers, J.; Kyriakides, T. R. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization. Acta Biomater. 2018, 75, 427–438.

    Article  CAS  Google Scholar 

  39. Piedra-Quintero, Z. L.; Serrano, C.; Villegas-Sepúlveda, N.; Maravillas-Montero, J. L.; Romero-Ramírez, S.; Shibayama, M.; Medina-Contreras, O.; Nava, P.; Santos-Argumedo, L. Myosin 1F regulates M1-polarization by stimulating intercellular adhesion in macrophages. Front. Immunol. 2019, 9, 3118.

    Article  Google Scholar 

  40. Siebers, M. C.; Ter Brugge, P. J.; Walboomers, X. F.; Jansen, J. A. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 2005, 26, 137–146.

    CAS  Google Scholar 

  41. Shekaran, A.; García, A. J. Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. Part A 2011, 96, 261–272.

    Article  Google Scholar 

  42. St-Pierre, J.; Moreau, F.; Cornick, S.; Quach, J.; Begum, S.; Fernandez, L. A.; Gorman, H.; Chadee, K. The macrophage cytoskeleton acts as a contact sensor upon interaction with entamoeba histolytica to trigger IL-1β secretion. PLoS Pathog. 2017, 13, e1006592.

    Article  Google Scholar 

  43. Bartneck, M.; Schulte, V. A.; Paul, N. E.; Diez, M.; Lensen, M. C.; Zwadlo-Klarwasser, G. Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater. 2010, 6, 3864–3872.

    Article  CAS  Google Scholar 

  44. Freytes, D. O.; Kang, J. W.; Marcos-Campos, I.; Vunjak-Novakovic, G. Macrophages modulate the viability and growth of human mesenchymal stem cells. J. Cell. Biochem. 2013, 114, 220–229.

    Article  CAS  Google Scholar 

  45. Tang, Z. R.; Wang, Z.; Qing, F. Z.; Ni, Y. L.; Fan, Y. J.; Tan, Y. F.; Zhang, X. D. Bone morphogenetic protein smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. J Biomed. Mater. Res. Part A 2015, 103, 1001–1010.

    Article  Google Scholar 

  46. Li, S. N.; Wu, J. F. TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment. Stem Cell. Res. Ther. 2020, 11, 41.

    Article  Google Scholar 

  47. Shi, Y.; Pan, X. L.; Xu, M.; Liu, H. R.; Xu, H. Z.; He, M. X. The role of Smad1/5 in mantle immunity of the pearl oyster Pinctada fucata martensii. Fish Shellfish Immunol. 2021, 113, 208–215.

    Article  CAS  Google Scholar 

  48. Zhang, H.; Zhan, Y. Y.; Zhang, Y.; Yuan, G. H.; Yang, G. B. Dual roles of TGF-β signaling in the regulation of dental epithelial cell proliferation. J. Mol. Histol. 2021, 52, 77–86.

    Article  CAS  Google Scholar 

  49. Hernandez, A. L.; Young, C. D.; Bian, L.; Weigel, K.; Nolan, K.; Frederick, B.; Han, G. W.; He, G. T.; Trahan, G. D.; Rudolph, M. C. et al. PARP inhibition enhances radiotherapy of SMAD4-deficient human head and neck squamous cell carcinomas in experimental models. Clin. Cancer Res. 2020, 26, 3058–3070.

    Article  CAS  Google Scholar 

  50. Wang, J.; Wang, M. L.; Chen, F. Y.; Wei, Y. H.; Chen, X. N.; Zhou, Y.; Yang, X.; Zhu, X. D.; Tu, C. Q.; Zhang, X. D. Nanohydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/Smad signaling pathway. Int. J. Nanomedicine 2019, 14, 7987–8000.

    Article  CAS  Google Scholar 

  51. Alexander, K. A.; Chang, M. K.; Maylin, E. R.; Kohler, T.; Müeller, R.; Wu, A. C.; Van Rooijen, N.; Sweet, M. J.; Hume, D. A.; Raggatt, L. J. et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Miner. Res. 2011, 26, 1517–1532.

    Article  CAS  Google Scholar 

  52. Martino, M. M.; Maruyama, K.; Kuhn, G. A.; Satoh, T.; Takeuchi, O.; Müeller, R.; Akira, S. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nat. Commun. 2016, 7, 11051.

    Article  CAS  Google Scholar 

  53. Gerstenfeld, L. C.; Cullinane, D. M.; Barnes, G. L.; Graves, D. T.; Einhorn, T. A. Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 2003, 88, 873–884.

    Article  CAS  Google Scholar 

  54. Dimitriou, R.; Tsiridis, E.; Giannoudis, P. V. Current concepts of molecular aspects of bone healing. Injury 2005, 36, 1392–1404.

    Article  Google Scholar 

  55. Cheng, N. C.; Estes, B. T.; Awad, H. A.; Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tiss. Eng. Part A 2009, 15, 231–241.

    Article  CAS  Google Scholar 

  56. Mahon, O. R.; Browe, D. C.; Gonzalez-Fernandez, T.; Pitacco, P.; Whelan, I. T.; Von Euw, S.; Hobbs, C.; Nicolosi, V.; Cunningham, K. T.; Mills, K. H. G. et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials 2020, 239, 119833.

    Article  CAS  Google Scholar 

  57. Heredia, J. E.; Mukundan, L.; Chen, F. M.; Mueller, A. A.; Deo, R. C.; Locksley, R. M.; Rando, T. A.; Chawla, A. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 2013, 153, 376–388.

    Article  CAS  Google Scholar 

  58. Sadtler, K.; Estrellas, K.; Allen, B. W.; Wolf, M. T.; Fan, H. N.; Tam, A. J.; Patel, C. H.; Luber, B. S.; Wang, H.; Wagner, K. R. et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 2016, 352, 366–370.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Key Research and Development Program of China (No. 2017YFB0702602), the National Nature Science Foundation of China (Nos. 31971283 and 31670985), and Sichuan Science and Technology Innovation Team of China (No. 2019JDTD0008). The authors thank Ms. Jiao Lu and Ms. Lingzhu Yu at Sichuan University for their assistance in CLSM and SEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfeng Li or Xuening Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Feng, C., Wang, M. et al. Whisker of biphasic calcium phosphate ceramics: Osteo-immunomodulatory behaviors. Nano Res. 15, 9169–9182 (2022). https://doi.org/10.1007/s12274-022-4591-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4591-0

Keywords

Navigation