Skip to main content
Log in

Construction of Ti3C2Tx/WOx heterostructures on carbon cloth for ultrahigh-mass loading flexible supercapacitor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The capacitance loss caused by slow electron and ion migration kinetics in thick electrode with high-mass loading has been regarded as a great challenge in the field of electrochemical energy storage. Herein, we demonstrate a facile electrochemical deposition method for coating the heterostructured Ti3C2Tx/WOx onto flexible carbon cloth (Ti3C2Tx/WOx@CC). In the Ti3C2Tx/WOx heterojunction, the mixed-valence WOx core provides abundant active sites for H+ ions accommodation, while Ti3C2Tx shell can not only prevent peeling off the thick WOx but also act as an interconnected conductive network. The Ti3C2Tx/WOx@CC flexible electrode with an ultrahigh mass loading of 34.9 mg·cm−2 exhibits a high areal capacitance of 5.73 F·cm−2 at 5 mA·cm−2 and excellent rate capability. Notably, the Ti3C2Tx/WOx@CC electrode under such a high mass loading still delivers a gravimetric capacitance of 164 F·g−1 and areal capacitance of Ti3C2Tx/WOx@CC electrode increases linearly with the WOx mass loading. Furthermore, a symmetrical supercapacitor assembled with Ti3C2Tx/WOx@CC electrode exhibits a good areal energy density of 96.8 μWh·cm−2 at a power density of 1.5 mW·cm−2. This work verifies high mass loading of active materials per unit electrode area for charge storage of supercapacitors in limited space, indicating the great potential in the development of commercially available thick metal-oxide film supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandasamy, M.; Sahoo, S.; Nayak, S. K.; Chakraborty, B.; Rout, C. S. Recent advances in engineered metal oxide nanostructures for supercapacitor applications: Experimental and theoretical aspects. J. Mater. Chem. A 2021, 9, 17643–17700.

    Article  CAS  Google Scholar 

  2. Amin, K.; Ashraf, N.; Mao, L. J.; Faul, C. F. J.; Wei, Z. X. Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy 2021, 85, 105958.

    Article  CAS  Google Scholar 

  3. Shinde, P. A.; Jun, S. C. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem 2020, 13, 11–38.

    Article  CAS  Google Scholar 

  4. Chen, R.; Yu, M.; Sahu, R. P.; Puri, I. K.; Zhitomirsky, I. The development of pseudocapacitor electrodes and devices with high active mass loading. Adv. Energy Mater. 2020, 10, 1903848.

    Article  CAS  Google Scholar 

  5. Dong, Y.; Zhu, J. Y.; Li, Q. Q.; Zhang, S.; Song, H. H.; Jia, D. Z. Carbon materials for high mass-loading supercapacitors: Filling the gap between new materials and practical applications. J. Mater. Chem. A 2020, 8, 21930–21946.

    Article  CAS  Google Scholar 

  6. Ji, S. H.; Chodankar, N. R.; Jang, W. S.; Kim, D. H. High mass loading of h-WO3 and α-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor. Electrochim. Acta 2019, 299, 245–252.

    Article  CAS  Google Scholar 

  7. Shinde, P. A.; Lokhande, A. C.; Chodankar, N. R.; Patil, A. M.; Kim, J. H.; Lokhande, C. D. Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application. Electrochim. Acta 2017, 224, 397–404.

    Article  CAS  Google Scholar 

  8. Huang, Y.; Li, Y.; Zhang, G. Y.; Liu, W.; Li, D.; Chen, R. S.; Zheng, F.; Ni, H. W. Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors. J. Alloys Compd. 2019, 778, 603–611.

    Article  CAS  Google Scholar 

  9. Ma, R.; Chen, Z. T.; Zhao, D. N.; Zhang, X. J.; Zhuo, J. T.; Yin, Y. J.; Wang, X. F.; Yang, G. W. et al. Ti3C2Tx MXene for electrode materials of supercapacitors. J. Mater. Chem. A 2021, 9, 11501–11529.

    Article  CAS  Google Scholar 

  10. Kshetri, T.; Tran, D. T.; Le, H. T.; Nguyen, D. C.; Hoa, H. V.; Kim, N. H.; Lee, J. H. Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Prog. Mater Sci. 2021, 117, 100733.

    Article  CAS  Google Scholar 

  11. Rakhi, R. B.; Ahmed, B.; Anjum, D.; Alshareef, H. N. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces 2016, 8, 18806–18814.

    Article  CAS  Google Scholar 

  12. Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.

    Article  Google Scholar 

  13. Pan, Z. H.; Yang, C. H.; Li, Y.; Hu, X.; Ji, X. H. Rational design of A-CNTs/KxMnO2 and Ti3C2Tx/MoO3 free-standing hybrid films for flexible asymmetric supercapacitor. Chem. Eng. J. 2022, 428, 131138.

    Article  CAS  Google Scholar 

  14. Li, F.; Liu, Y. L.; Wang, G. G.; Zhang, H. Y.; Zhang, B.; Li, G. Z.; Wu, Z. P.; Dang, L. Y.; Han, J. C. Few-layered Ti3C2Tx MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 22631–22641.

    Article  CAS  Google Scholar 

  15. Zhou, J.; Yu, J. L.; Shi, L. D.; Wang, Z.; Liu, H. C.; Yang, B.; Li, C. H.; Zhu, C. Z.; Xu, J. A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 2018, 14, 1803786.

    Article  Google Scholar 

  16. Pan, Z. H.; Ji, X. H. Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors. J. Power Sources 2019, 439, 227068.

    Article  CAS  Google Scholar 

  17. Chen, Y. Y.; Chien, W. C.; Lee, M. H.; Chen, Y. C.; Chuang, A. T. H.; Hong, T. J.; Lin, S. J.; Wu, T. B.; Lu, C. Y. Evaluation of the WOx film properties for resistive random access memory application. Jpn. J. Appl. Phys. 2012, 51, 04DD15.

    Article  Google Scholar 

  18. Yadav, A. A.; Hunge, Y. M.; Kang, S. W. Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf. Interfaces 2021, 24, 101075.

    Article  CAS  Google Scholar 

  19. Bonnotte, T.; Doherty, R. P.; Sayag, C.; Krafft, J. M.; Méthivier, C.; Sicard, M.; Ser, F.; Thomas, C. Insights into the WOx coverage-dependent location and oxidation state of noble metals supported on tungstated oxides: The case of Rh/WOx-Ce0.62Zr0.38O2. J. Phys. Chem. C 2014, 118, 7386–7397.

    Article  CAS  Google Scholar 

  20. Pan, T.; Chen, D. D.; Xu, W. C.; Fang, J. Z.; Wu, S. X.; Liu, Z.; Wu, K.; Fang, Z. Q. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J. Hazard. Mater. 2020, 393, 122366.

    Article  CAS  Google Scholar 

  21. Cui, L. F.; Ding, X.; Wang, Y. G.; Shi, H. C.; Huang, L. H.; Zuo, Y. H.; Kang, S. F. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl. Surf. Sci. 2017, 391, 202–210.

    Article  CAS  Google Scholar 

  22. Yu, W. L.; Chen, J. X.; Shang, T. T.; Chen, L. F.; Gu, L.; Peng, T. Y. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal. B Environ. 2017, 219, 693–704.

    Article  CAS  Google Scholar 

  23. Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.

    Article  CAS  Google Scholar 

  24. Rozmyslowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; Chlubny, L.; Olszyna, A.; Jastrzębska, A. M. Surface interactions between 2D Ti3C2/Ti2C MXenes and Lysozyme. Appl. Surf. Sci. 2019, 473, 409–418.

    Article  CAS  Google Scholar 

  25. Pan, Z. H.; Cao, F.; Hu, X.; Ji, X. H. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8984–8992.

    Article  CAS  Google Scholar 

  26. Chen, C. L.; Zhang, Y.; Li, Y. J.; Dai, J. Q.; Song, J. W.; Yao, Y. G.; Gong, Y. H.; Kierzewski, I.; Xie, J.; Hu, L. B. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 2017, 10, 538–545.

    Article  CAS  Google Scholar 

  27. Shi, K. Y.; Ren, M.; Zhitomirsky, I. Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. ACS Sustain. Chem. Eng. 2014, 2, 1289–1298.

    Article  CAS  Google Scholar 

  28. Chen, R.; Ata, M. S.; Zhao, X. Y.; Clifford, A.; Puri, I.; Zhitomirsky, I. Strategies for liquid-liquid extraction of oxide particles for applications in supercapacitor electrodes and thin films. J. Colloid Interface Sci. 2017, 499, 1–8.

    Article  CAS  Google Scholar 

  29. Chen, R.; Puri, I. K.; Zhitomirsky, I. Polypyrrole-carbon nanotube-FeOOH composites for negative electrodes of asymmetric supercapacitors. J. Electrochem. Soc. 2019, 166, A935–A940.

    Article  CAS  Google Scholar 

  30. Li, X. L.; Zhu, J. F.; Liang, W. Y.; Zhitomirsky, I. MXene (Ti3C2Tx) anodes for asymmetric supercapacitors with high active mass loading. Mater. Chem. Phys. 2021, 268, 124748.

    Article  CAS  Google Scholar 

  31. Li, L.; Zhang, N.; Zhang, M. Y.; Wu, L. L.; Zhang, X. T.; Zhang, Z. G. Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 7442–7450.

    Article  CAS  Google Scholar 

  32. Li, L.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 2017, 364, 234–241.

    Article  CAS  Google Scholar 

  33. Li, Z. S.; Zhang, L.; Li, B. L.; Liu, Z. S.; Liu, Z. H.; Wang, H. Q.; Li, Q. Y. Convenient and large-scale synthesis of hollow graphene-like nanocages for electrochemical supercapacitor application. Chem. Eng. J. 2017, 313, 1242–1250.

    Article  CAS  Google Scholar 

  34. Nagaraju, G.; Ko, Y. H.; Cha, S. M.; Im, S. H.; Yu, J. S. A facile one-step approach to hierarchically assembled core-shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Res. 2016, 9, 1507–1522.

    Article  CAS  Google Scholar 

  35. Yang, J.; Xiao, X.; Chen, P.; Zhu, K.; Cheng, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 2019, 58, 455–465.

    Article  CAS  Google Scholar 

  36. Song, Y.; Liu, T. Y.; Yao, B.; Li, M. Y.; Kou, T. Y.; Huang, Z. H.; Feng, D. Y.; Wang, F. X.; Tong, Y. X.; Liu, X. X. et al. Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2017, 2, 1752–1759.

    Article  CAS  Google Scholar 

  37. Lyu, L.; Seong, K. D.; Kim, J. M.; Zhang, W.; Jin, X. Z.; Kim, D. K.; Jeon, Y.; Kang, J.; Piao, Y. Z. CNT/high mass loading MnO2/Graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 2019, 11, 88.

    Article  CAS  Google Scholar 

  38. Ardizzone, S.; Fregonara, G.; Trasatti, S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267.

    Article  CAS  Google Scholar 

  39. Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

    Article  Google Scholar 

  40. Jian, X.; Li, J. G.; Yang, H. M.; Cao, L. L.; Zhang, E. H.; Liang, Z. H. Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon 2017, 114, 533–543.

    Article  CAS  Google Scholar 

  41. Zhu, S. J.; Göbel, M.; Formanek, P.; Simon, F.; Sommer, M.; Choudhury, S. Mask-painting symmetrical micro-supercapacitors based on scalable, pore size adjustable, n-doped hierarchical porous carbon. J. Mater. Chem. A 2021, 9, 14052–14063.

    Article  CAS  Google Scholar 

  42. Wan, C.; Jiao, Y.; Li, J. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors. J. Power Sources 2017, 361, 122–132.

    Article  CAS  Google Scholar 

  43. Zhang, Y. X.; Xie, E. Q. Functionalized and tip-open carbon nanotubes for high-performance symmetric supercapacitors. Dalton Trans. 2021, 50, 12982–12989.

    Article  CAS  Google Scholar 

  44. Jiang, H.; Zhou, C.; Yan, X. H.; Miao, J. Y.; You, M. Y.; Zhu, Y. H.; Li, Y. L.; Zhou, W. D.; Cheng, X. N. Effects of various electrolytes on the electrochemistry performance of Mn3O4/carbon cloth to ultra-flexible all-solid-state asymmetric supercapacitor. J. Energy Storage 2020, 32, 101898.

    Article  Google Scholar 

  45. Wang, S. Z.; Sun, C. L.; Shao, Y. L.; Wu, Y. Z.; Zhang, L.; Hao, X. P. Self-supporting GaN nanowires/graphite paper: Novel highperformance flexible supercapacitor electrodes. Small 2017, 13, 1603330.

    Article  Google Scholar 

  46. Patil, A. M.; Wang, J. J.; Li, S. S.; Hao, X. Q.; Du, X.; Wang, Z. G.; Hao, X. G.; Abudula, A.; Guan, G. Q. Bilateral growth of monoclinic WO3 and 2D Ti3C2Tx on 3D free-standing hollow graphene foam for all-solid-state supercapacitor. Chem. Eng. J. 2021, 421, 127883.

    Article  CAS  Google Scholar 

  47. Zhao, W. W.; Peng, J. L.; Wang, W. K.; Jin, B. B.; Chen, T. T.; Liu, S. J.; Zhao, Q.; Huang, W. Interlayer hydrogen-bonded metal porphyrin frameworks/MXene hybrid film with high capacitance for flexible all-solid-state supercapacitors. Small 2019, 15, 1901351.

    Article  Google Scholar 

  48. Wang, Y. M.; Wang, X.; Li, X. L.; Liu, R.; Bai, Y.; Xiao, H. H.; Liu, Y.; Yuan, G. H. Intercalating ultrathin MoO3 nanobelts into mxene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices. Nano-Micro Lett. 2020, 12, 115.

    Article  CAS  Google Scholar 

  49. Karuppaiah, M.; Sakthivel, P.; Asaithambi, S.; Balaji, V.; Vijayaprasath, G.; Yuvakkumar, R.; Ravi, G. In-situ deposition of amorphous tungsten(VI) oxide thin-film for solid-state symmetric supercapacitor. Ceram. Int. 2022, 48, 2510–2521.

    Article  CAS  Google Scholar 

  50. Zhao, K. X.; Wang, H. R.; Zhu, C. C.; Lin, S. Y.; Xu, Z. K.; Zhang, X. T. Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor. Electrochim. Acta 2019, 308, 1–8.

    Article  CAS  Google Scholar 

  51. Nie, G. D.; Zhao, X. W.; Jiang, J. M.; Luan, Y. X.; Shi, J. L.; Liu, J. M.; Kou, Z. K.; Wang, J.; Long, Y. Z. Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. Chem. Eng. J. 2020, 402, 126294.

    Article  CAS  Google Scholar 

  52. Wang, X.; Wang, Y. M.; Liu, D. D.; Li, X. L.; Xiao, H. H.; Ma, Y.; Xu, M.; Yuan, G. H.; Chen, G. R. Opening mxene ion transport channels by intercalating PANI nanoparticles from the self-assembly approach for high volumetric and areal energy density supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 30633–30642.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51572092, 51872098, and 51922042), the Natural Science Foundation of Guangdong Province, China (No. 2021A1515010452), and the Fundamental Research Funds for Central Universities, China (No. 2020ZYGXZR074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenghao Yang or Xiaohong Ji.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Yang, C., Chen, Z. et al. Construction of Ti3C2Tx/WOx heterostructures on carbon cloth for ultrahigh-mass loading flexible supercapacitor. Nano Res. 15, 8991–8999 (2022). https://doi.org/10.1007/s12274-022-4561-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4561-6

Keywords

Navigation