Skip to main content
Log in

Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing highly stable and active non-Pt oxygen reduction reaction (ORR) electrocatalysts for power generation device raises great concerns and remains a challenge. Here, we report novel truncated Pd tetrahedrons (T−Pd−Ths) enclosed by {111} facets with excellent uniformity, which have both low-coordinated surface sites and distinct lattice distortions that would induce “local strain”. In alkaline electrolyte, the T−Pd−Ths/C achieves remarkable ORR specific/mass activity (SA/MA) of 2.46 mA·cm−2/1.69 A·mgPd−1, which is 12.3/16.9 and 10.7/14.1 times higher than commercial Pd/C and Pt/C, respectively. The T−Pd−Ths/C also exhibits high in-situ carbon monoxide (CO) tolerance and 50,000 cycles durability with an activity loss of 7.69% and morphological stability. The rotating ring-disk electrode (RRDE) measurements show that a 4-electron process occurs on T−Pd−Ths/C. Theoretical calculations demonstrate that the low-coordinated surface sites contribute largely to the enhancement of ORR activity. In actual direct methanol fuel cell (DMFC) device, the T−Pd−Ths/C delivers superior open-circuit voltage (OCV) and peak power density (PPD) to commercial Pt/C from 25 to 80 °C, and the maximum PPD can reach up to 163.7 mW·cm−2. This study demonstrates that the T−Pd−Ths/C holds promise as alternatives to Pt for ORR in DMFC device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  Google Scholar 

  2. Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

    Article  CAS  Google Scholar 

  3. Chandrasekaran, S.; Ma, D. T.; Ge, Y. Q.; Deng, L. B.; Bowen, C.; Roscow, J.; Zhang, Y.; Lin, Z. Q.; Misra, R. D. K.; Li, J. Q. et al. Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 2020, 77, 105080.

    Article  CAS  Google Scholar 

  4. Liu, Z. Y.; Zhao, Z. P.; Peng, B. S.; Duan, X. F.; Huang, Y. Beyond extended surfaces: Understanding the oxygen reduction reaction on nanocatalysts. J. Am. Chem. Soc. 2020, 142, 17812–17827.

    Article  CAS  Google Scholar 

  5. Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.

    Article  CAS  Google Scholar 

  6. Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

    Article  CAS  Google Scholar 

  7. Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis. Small 2021, 17, 2005092.

    Article  CAS  Google Scholar 

  8. Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.

    Article  CAS  Google Scholar 

  9. Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

    Article  CAS  Google Scholar 

  10. Shi, S.; Wen, X. L.; Sang, Q. Q.; Yin, S.; Wang, K. L.; Zhang, J.; Hu, M.; Yin, H. M.; He, J.; Ding, Y. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Res. 2021, 14, 2681–2688.

    Article  CAS  Google Scholar 

  11. Yang, Y.; Xiao, W. P.; Feng, X. R.; Xiong, Y.; Gong, M. X.; Shen, T.; Lu, Y.; Abruña, H. D.; Wang, D. L. Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts. ACS Nano 2019, 13, 5968–5974.

    Article  CAS  Google Scholar 

  12. Lei, W. J.; Li, M. G.; He, L.; Meng, X.; Mu, Z. J.; Yu, Y. S.; Ross, F. M.; Yang, W. W. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020, 13, 638–645.

    Article  CAS  Google Scholar 

  13. Jiang, G. M.; Zhu, H. Y.; Zhang, X.; Shen, B.; Wu, L. H.; Zhang, S.; Lu, G.; Wu, Z. B.; Sun, S. H. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS Nano 2015, 9, 11014–11022.

    Article  CAS  Google Scholar 

  14. Nosheen, F.; Wasfi, N.; Aslam, S.; Anwar, T.; Hussain, S.; Hussain, N.; Shah, S. N.; Shaheen, N.; Ashraf, A.; Zhu, Y. T. et al. Ultrathin Pd-based nanosheets: Syntheses, properties and applications. Nanoscale 2020, 12, 4219–4237.

    Article  CAS  Google Scholar 

  15. Lai, J. P.; Huang, B. L.; Tang, Y. H.; Lin, F.; Zhou, P.; Chen, X.; Sun, Y. J.; Lv, F.; Guo, S. J. Barrier-free interface electron transfer on PtFe-Fe2C Janus-like nanoparticles boosts oxygen catalysis. Chem 2018, 4, 1153–1166.

    Article  CAS  Google Scholar 

  16. Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

    Article  CAS  Google Scholar 

  17. Tian, X, L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt−Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    Article  CAS  Google Scholar 

  18. Chaudhari, N. K.; Hong, Y. J.; Kim, B.; Choi, S. I.; Lee, K. Pt−Cu based nanocrystals as promising catalysts for various electrocatalytic reactions. J. Mater. Chem. A 2019, 7, 17183–17203.

    Article  CAS  Google Scholar 

  19. Hu, Q. Y.; Zhan, W.; Guo, Y. F.; Luo, L. M.; Zhang, R. H.; Chen, D.; Zhou, X. W. Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction. J. Energy Chem. 2020, 40, 217–223.

    Article  Google Scholar 

  20. Xu, G. R.; Han, C. C.; Zhu, Y. Y.; Zeng, J. H.; Jiang, J. X.; Chen, Y. PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids toward the oxygen reduction reaction. Adv. Mater. Interfaces 2018, 5, 1701322.

    Article  Google Scholar 

  21. Bu, L. Z.; Shao, Q.; Pi, Y. C.; Yao, J. L.; Luo, M. C.; Lang, J. P.; Hwang, S.; Xin, H. L.; Huang, B. L.; Guo, J. et al. Coupled s-p-d exchange in facet-controlled Pd3Pb tripods enhances oxygen reduction catalysis. Chem 2018, 4, 359–371.

    Article  CAS  Google Scholar 

  22. Jiang, X.; Xiong, Y. X.; Zhao, R. P.; Zhou, J. C.; Lee, J. M.; Tang, Y. W. Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Res. 2020, 11, 2691–2696.

    Article  Google Scholar 

  23. Chen, S. P.; Li, M. F.; Gao, M. Y.; Jin, J. B.; van Spronsen, M. A.; Salmeron, M. B.; Yang, P. D. High-performance Pt−Co nanoframes for fuel-cell electrocatalysis. Nano Lett. 2020, 20, 1974–1979.

    Article  CAS  Google Scholar 

  24. Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd−Cu−Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

    Article  CAS  Google Scholar 

  25. Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 6315–6319.

    Article  CAS  Google Scholar 

  26. Zhang, H. F.; Qiu, X. Y.; Chen, Y. F.; Wang, S. Z.; Skrabalak, S. E.; Tang, Y. W. Shape control of monodispersed sub-5 nm Pd tetrahedrons and laciniate Pd nanourchins by maneuvering the dispersed state of additives for boosting ORR performance. Small 2020, 16, 1906026.

    Article  CAS  Google Scholar 

  27. Setvín, M.; Wagner, M.; Schmid, M.; Parkinson, G. S.; Diebold, U. Surface point defects on bulk oxides: Atomically-resolved scanning probe microscopy. Chem. Soc. Rev. 2017, 46, 1772–1784.

    Article  Google Scholar 

  28. Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.

    Article  Google Scholar 

  29. Xu, G. R.; Wang, B.; Zhu, J. Y.; Liu, F. Y.; Chen, Y.; Zeng, J. H.; Jiang, J. X.; Liu, Z. H.; Tang, Y. W.; Lee, J. M. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catal. 2016, 6, 5260–5267.

    Article  CAS  Google Scholar 

  30. Li, Y. L.; He, J. F.; Cheng, W. R.; Su, H.; Li, C. L.; Zhang, H.; Liu, M. H.; Zhou, W. L.; Chen, X.; Liu, Q. H. High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Sci. China Mater. 2021, 64, 2467–2476.

    Article  CAS  Google Scholar 

  31. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  CAS  Google Scholar 

  32. Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580–7581.

    Article  CAS  Google Scholar 

  33. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  34. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    Article  CAS  Google Scholar 

  35. Zhu, W. X.; Yuan, H.; Liao, F.; Shen, Y. W.; Shi, H. X.; Shi, Y. D.; Xu, L.; Ma, M. J.; Shao, M. W. Strain engineering for Janus palladium-gold bimetallic nanoparticles: Enhanced electrocatalytic performance for oxygen reduction reaction and zinc-air battery. Chem. Eng. J. 2020, 389, 124240.

    Article  CAS  Google Scholar 

  36. Zhang, Y.; Huang, B. L.; Luo, G.; Sun, T.; Feng, Y. G.; Wang, Y. C.; Ma, Y. H.; Shao, Q.; Li, Y. F.; Zhou, Z. Y. et al. Atomically deviated Pd−Te nanoplates boost methanol-tolerant fuel cells. Sci. Adv. 2020, 6, eaba9731.

    Article  CAS  Google Scholar 

  37. Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 33, 2103383.

    Article  CAS  Google Scholar 

  38. Yu, H. J.; Zhou, T. Q.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12027–12031.

    Article  CAS  Google Scholar 

  39. Zuo, Y. P.; Rao, D. W.; Li, S.; Li, T. T.; Zhu, G. L.; Chen, S. M.; Song, L.; Chai, Y.; Han, H. Y. Atomic vacancies control of Pd-based catalysts for enhanced electrochemical performance. Adv. Mater. 2018, 30, 1704171.

    Article  Google Scholar 

  40. Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

    Article  Google Scholar 

  41. Li, X.; Li, X. X.; Liu, C. X.; Huang, H. W.; Gao, P. F.; Ahmad, F.; Luo, L. H.; Ye, Y. F.; Geng, Z. G.; Wang, G. X. et al. Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis. Nano Lett. 2020, 20, 1403–1409.

    Article  CAS  Google Scholar 

  42. Feng, Y.; Liu, H.; Yang, J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Sci. Adv. 2017, 3, e1700580.

    Article  Google Scholar 

  43. Sun, Y. J.; Huang, B. L.; Xu, N. Y.; Li, Y. J.; Luo, M. C.; Li, C. J.; Qin, Y. N.; Wang, L.; Guo, S. J. Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Sci. Bull. 2019, 64, 54–62.

    Article  CAS  Google Scholar 

  44. Xiong, W.; Mehrabadi, B. A. T.; Karakolos, S. G.; White, R. D.; Shakouri, V.; Kasak, P.; Zaidi, S. J.; Weidner, J. W.; Regalbuto, J. R.; Colon-Mercado, H. et al. Enhanced performance of oxygen-functionalized multiwalled carbon nanotubes as support for Pt and Pt−Ru bimetallic catalysts for methanol electrooxidation. ACS Appl. Energy Mater. 2020, 3, 5487–5496.

    Article  CAS  Google Scholar 

  45. Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

    Article  CAS  Google Scholar 

  46. Mahsud, A.; Chen, J. N.; Yuan, X. L.; Lyu, F.; Zhong, Q. X.; Chen, J. X.; Yin, Y. D.; Zhang, Q. Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Res. 2021, 14, 2819–2825.

    Article  CAS  Google Scholar 

  47. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics Inc.: Chanhassen, 1995.

    Google Scholar 

  48. Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

    Article  CAS  Google Scholar 

  49. Zhang, Y.; Zhu, X.; Guo, J.; Huang, X. Q. Controlling palladium nanocrystals by solvent-induced strategy for efficient multiple liquid fuels electrooxidation. ACS Appl. Mater. Interfaces 2016, 8, 20642–20649.

    Article  CAS  Google Scholar 

  50. Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.

    Article  CAS  Google Scholar 

  51. Shen, M.; Xie, M. H.; Slack, J.; Waldrop, K.; Chen, Z.; Lyu, Z.; Cao, S. H.; Zhao, M.; Chi, M. F.; Pintauro, P. N. et al. Pt−Co truncated octahedral nanocrystals: A class of highly active and durable catalysts toward oxygen reduction. Nanoscale 2020, 12, 11718–11727.

    Article  CAS  Google Scholar 

  52. Xia, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Gu, L.; Wang, R. M. Enhanced catalytic activities of NiPt truncated octahedral nanoparticles toward ethylene glycol oxidation and oxygen reduction in alkaline electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 10841–10849.

    Article  CAS  Google Scholar 

  53. Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

    Article  CAS  Google Scholar 

  54. Xiao, W. P.; Cordeiro, M. A. L.; Gao, G. Y.; Zheng, A. M.; Wang, J.; Lei, W.; Gong, M. X.; Lin, R. Q.; Stavitski, E.; Xin, H. L. L. et al. Atomic rearrangement from disordered to ordered Pd−Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy 2018, 50, 70–78.

    Article  CAS  Google Scholar 

  55. Lin, J. Y.; Xi, C.; Li, Z.; Feng, Y.; Wu, D. Y.; Dong, C. K.; Yao, P.; Liu, H.; Du, X. W. Lattice-strained palladium nanoparticles as active catalysts for the oxygen reduction reaction. Chem. Commun. 2019, 55, 3121–3123.

    Article  CAS  Google Scholar 

  56. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  CAS  Google Scholar 

  57. Chattot, R.; Le Bacq, O.; Beermann, V.; Kühl, S.; Herranz, J.; Henning, S.; Kühn, L.; Asset, T.; Guétaz, L.; Renou, G. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 2018, 17, 827–833.

    Article  CAS  Google Scholar 

  58. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    Article  CAS  Google Scholar 

  59. Wang, Y. R.; Hu, R. M.; Li, Y. C.; Wang, F. H.; Shang, J. X.; Shui, J. L. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022, 15, 1054–1060.

    Article  CAS  Google Scholar 

  60. Fu, Q. Q.; Li, H. H.; Ma, S. Y.; Hu, B. C.; Yu, S. H. A mixed-solvent route to unique PtAuCu ternary nanotubes templated from Cu nanowires as efficient dual electrocatalysts. Sci. China Mater. 2016, 59, 112–121.

    Article  CAS  Google Scholar 

  61. Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 2017, 11, 10844–10851.

    Article  CAS  Google Scholar 

  62. Luo, L. X.; Zhu, F. J.; Tian, R. X.; Li, L.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Composition-graded PdxNi1−x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catal. 2017, 7, 5420–5430.

    Article  CAS  Google Scholar 

  63. Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

    Article  CAS  Google Scholar 

  64. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  CAS  Google Scholar 

  65. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

    Article  CAS  Google Scholar 

  66. Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  CAS  Google Scholar 

  67. Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. J. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875.

    Article  CAS  Google Scholar 

  68. Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

    Article  CAS  Google Scholar 

  69. Liu, M. Y.; Xiao, X. D.; Li, Q.; Luo, L. Y.; Ding, M. H.; Zhang, B.; Li, Y. X.; Zou, J. L.; Jiang, B. J. Recent progress of electrocatalysts for oxygen reduction in fuel cells. J. Colloid Interface Sci. 2022, 607, 791–815.

    Article  CAS  Google Scholar 

  70. Wu, W. J.; Zhou, Z. F.; Wang, Y.; Zhang, Y. T.; Wang, Y.; Wang, J. T.; Zou, Y. C. Manipulating the ionic nanophase of Nafion by in-situ precise hybridization with polymer quantum dot towards highly enhanced fuel cell performances. Nano Res. 2022, 15, 4124–4131.

    Article  CAS  Google Scholar 

  71. Guo, J. C.; Gao, L.; Tan, X.; Yuan, Y. L.; Kim, J.; Wang, Y.; Wang, H.; Zeng, Y. J.; Choi, S. I.; Smith, S. C. et al. Template-directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 10942–10949.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21571038), Education Department of Guizhou Province (No. 2021312), Foundation of Guizhou Province (No. 2019-5666), Science Foundation for Aftergraduated Students of Guizhou Province (No. YJSCXJH2020045), State Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University, No. 2011DA105287-ZR202101), State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University, No. 202009), and the Open Fund of the Key Lab of Organic Optoelectronics & Molecular Engineering (Tsinghua University). We gratefully acknowledge Analytical and Testing Center of Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Yong Gan, Ke Xin Yao or Qiang Yuan.

Electronic Supplementary Material

12274_2022_4492_MOESM1_ESM.pdf

Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, J., Yang, X. et al. Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Res. 15, 7951–7958 (2022). https://doi.org/10.1007/s12274-022-4492-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4492-2

Keywords

Navigation