Skip to main content
Log in

Direct synthesis of moiré superlattice through chemical vapor deposition growth of monolayer WS2 on plasma-treated HOPG

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vertical van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials have recently attracted substantial interests due to their unique properties. However, the direct synthesis of moiré superlattice remains a great challenge due to the difficulties in heterogeneous nucleation on smooth vdW surfaces. Here, we report a controllable chemical vapor deposition growth of complete monolayer WS2 on highly ordered pyrolytic graphite (HOPG) substrates through the plasma pretreatment. The results show that the morphologies of the grown WS2 have a strong dependence on the plasma parameters, including gas composition, source power, and treatment time. It is found that the surface C-C bonds are broken in the plasma pretreated HOPG, and the formed small clusters can act as the nucleation sites for the subsequent growth of WS2. Moreover, the height of clusters dominates the growth mode of WS2 islands. A transition from a 2D mode to three-dimensional (3D) growth mode occurs when the height is higher than the interlayer spacing of the heterostructure. Besides, diverse moiré superlattices with different twist angles for WS2/HOPG heterostructures are observed, and the formation mechanism is further analyzed by first-principles calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  2. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    Article  CAS  Google Scholar 

  3. Ye, Z. L.; Cao, T.; O’Brien, K.; Zhu, H. Y.; Yin, X. B.; Wang, Y.; Louie, S. G.; Zhang, X. Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214–218.

    Article  CAS  Google Scholar 

  4. Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

    Article  CAS  Google Scholar 

  5. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  CAS  Google Scholar 

  6. Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

    Article  CAS  Google Scholar 

  7. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  8. Chen, G. R.; Jiang, L. L.; Wu, S.; Lyu, B. S.; Li, H. Y.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Shi, Z. W.; Jung, J. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 2019, 15, 237–241.

    Article  CAS  Google Scholar 

  9. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    Article  CAS  Google Scholar 

  10. He, J. Q.; Kumar, N.; Bellus, M. Z.; Chiu, H. Y.; He, D. W.; Wang, Y. S.; Zhao, H. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures. Nat. Commun. 2014, 5, 5622.

    Article  CAS  Google Scholar 

  11. Song, Z. P.; Zhu, H. O.; Shi, W. T.; Sun, D. L.; Ruan, S. C. Ultrafast charge transfer in graphene-WS2 van der Waals heterostructures. Optik 2018, 174, 62–67.

    Article  CAS  Google Scholar 

  12. Ulstrup, S.; Koch, R. J.; Singh, S.; McCreary, K. M.; Jonker, B. T.; Robinson, J. T.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Katoch, J. et al. Direct observation of minibands in a twisted graphene/WS2 bilayer. Sci. Adv. 2020, 6, eaay6104.

    Article  CAS  Google Scholar 

  13. Liao, M. Z.; Wu, Z. W.; Du, L. J.; Zhang, T. T.; Wei, Z.; Zhu, J. Q.; Yu, H.; Tang, J.; Gu, L.; Xing, Y. X. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 2018, 9, 4068.

    Article  Google Scholar 

  14. Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273–8277.

    Article  CAS  Google Scholar 

  15. Kobayashi, Y.; Sasaki, S.; Mori, S.; Hibino, H.; Liu, Z.; Watanabe, K.; Taniguchi, T.; Suenaga, K.; Maniwa, Y.; Miyata, Y. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 2015, 9, 4056–4063.

    Article  CAS  Google Scholar 

  16. Chen, J. J.; Shao, K.; Yang, W. H.; Tang, W. Q.; Zhou, J. P.; He, Q. M.; Wu, Y. P.; Zhang, C. M.; Li, X.; Yang, X. et al. Synthesis of wafer-scale monolayer WS2 crystals toward the application in integrated electronic devices. ACS Appl. Mater. Interfaces 2019, 11, 19381–19387.

    Article  CAS  Google Scholar 

  17. Yang, P.; Yang, A. G.; Chen, L. X.; Chen, J.; Zhang, Y. W.; Wang, H. M.; Hu, L. G.; Zhang, R. J.; Liu, R.; Qu, X. P. et al. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 2019, 12, 823–827.

    Article  CAS  Google Scholar 

  18. Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

    Article  CAS  Google Scholar 

  19. Aljarb, A.; Cao, Z.; Tang, H. L.; Huang, J. K.; Li, M. L.; Hu, W. J.; Cavallo, L.; Li, L. J. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 2017, 11, 9215–9222.

    Article  CAS  Google Scholar 

  20. Zhang, X. T.; Choudhury, T. H.; Chubarov, M.; Xiang, Y.; Jariwala, B.; Zhang, F.; Alem, N.; Wang, G. C.; Robinson, J. A.; Redwing, J. M. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 2018, 18, 1049–1056.

    Article  CAS  Google Scholar 

  21. Xu, Z. Q.; Zhang, Y. P.; Lin, S. H.; Zheng, C. X.; Zhong, Y. L.; Xia, X.; Li, Z. P.; Sophia, P. J.; Fuhrer, M. S.; Cheng, Y. B. et al. Synthesis and transfer of large-area monolayer WS2 Crystals: Moving toward the recyclable use of sapphire substrates. ACS Nano 2015, 9, 6178–6187.

    Article  CAS  Google Scholar 

  22. Sun, B. F.; Chen, J. J.; Zhou, X. Y.; Liu, M.; Wu, Y. P.; Xia, Y. Z.; Li, X.; Wu, Z. M.; Kang, J. Y. Facile synthesis of two-dimensional MoS2/WS2 lateral heterostructures with controllable core/shell size ratio by a one-step chemical vapor deposition method. Sci. China Phys. Mech. Astron. 2021, 64, 107311.

    Article  CAS  Google Scholar 

  23. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  24. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  25. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396.

    Article  CAS  Google Scholar 

  26. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    Article  CAS  Google Scholar 

  27. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

    Article  Google Scholar 

  28. Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.

    Article  CAS  Google Scholar 

  29. Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Article  Google Scholar 

  30. Li, T. B.; Liu, C. Y.; Zhang, Z.; Yu, B.; Dong, H. L.; Jia, W.; Jia, Z. G.; Yu, C. Y.; Gan, L.; Xu, B. S. et al. Understanding the growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite. Nanoscale Res. Lett. 2018, 13, 130.

    Article  CAS  Google Scholar 

  31. Yang, X. C.; Tang, S. J.; Ding, G. Q.; Xie, X. M.; Jiang, M. H.; Huang, F. Q. Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology 2012, 23, 025704.

    Article  Google Scholar 

  32. Hashimoto, Y.; Huang, H. H.; Yoshimura, M.; Hara, M.; Hara, T.; Hara, Y.; Hamagaki, M. Dependence on treatment ion energy of nitrogen plasma for oxygen reduction reaction of high ordered pyrolytic graphite. Jpn. J. Appl. Phys. 2018, 57, 125504.

    Article  Google Scholar 

  33. Zhang, L. F.; Feng, S. P.; Xiao, S. Q.; Shen, G.; Zhang, X. M.; Nan, H. Y.; Gu, X. F.; Ostrikov, K. Layer-controllable graphene by plasma thinning and post-annealing. Appl. Surf. Sci. 2018, 441, 639–646.

    Article  CAS  Google Scholar 

  34. Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

    Article  CAS  Google Scholar 

  35. Raj, R.; Maroo, S. C.; Wang, E. N. Wettability of graphene. Nano Lett. 2013, 13, 1509–1515.

    Article  CAS  Google Scholar 

  36. Shin, Y. J.; Wang, Y. Y.; Huang, H.; Kalon, G.; Wee, A. T. S.; Shen, Z. X.; Bhatia, C. S.; Yang, H. Surface-energy engineering of graphene. Langmuir 2010, 26, 3798–3802.

    Article  CAS  Google Scholar 

  37. Jo, S.; Jung, J. W.; Baik, J.; Kang, J. W.; Park, I. K.; Bae, T. S.; Chung, H. S.; Cho, C. H. Surface-diffusion-limited growth of atomically thin WS2 crystals from core-shell nuclei. Nanoscale 2019, 11, 8706–8714.

    Article  CAS  Google Scholar 

  38. Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6, 2667–2673.

    Article  CAS  Google Scholar 

  39. Ferrari, A. C. Raman spectroscopy of graphene and graphites Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

    Article  CAS  Google Scholar 

  40. Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenations Evidence for graphane. Science 2009, 323, 610–613.

    Article  CAS  Google Scholar 

  41. Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; De Heer, W. A.; Lee, D. H.; Guinea, F.; Castro Neto, A. H.; Lanzara, A. Erratums Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 916–916.

    Article  CAS  Google Scholar 

  42. Kerelsky, A.; McGilly, L. J.; Kennes, D. M.; Xian, L. D.; Yankowitz, M.; Chen, S. W.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 2019, 572, 95–100.

    Article  CAS  Google Scholar 

  43. Rosenberger, M. R.; Chuang, H. J.; Phillips, M.; Oleshko, V. P.; McCreary, K. M.; Sivaram, S. V.; Hellberg, C. S.; Jonker, B. T. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550–4558.

    Article  CAS  Google Scholar 

  44. Zheng, Z. R.; Ma, Q.; Bi, Z.; de la Barrera, S.; Liu, M. H.; Mao, N. N.; Zhang, Y.; Kiper, N.; Watanabe, K.; Taniguchi, T. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 2020, 588, 71–76.

    Article  CAS  Google Scholar 

  45. Büch, H.; Rossi, A.; Forti, S.; Convertino, D.; Tozzini, V.; Coletti, C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res. 2018, 11, 5946–5956.

    Article  Google Scholar 

  46. Liu, X. L.; Balla, I.; Bergeron, H.; Hersam, M. C. Point defects and grain boundaries in rotationally commensurate MoS2 on epitaxial graphene. J. Phys. Chem. C 2016, 120, 20798–20805.

    Article  CAS  Google Scholar 

  47. Chen, P. Y.; Zhang, X. Q.; Lai, Y. Y.; Lin, E. C.; Chen, C. A.; Guan, S. Y.; Chen, J. J.; Yang, Z. H.; Tseng, Y. W.; Gwo, S. et al. Tunable moiré superlattice of artificially twisted monolayers. Adv. Mater. 2019, 31, 1901077.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Nos. 61974123, 61874092, and 61804129), the National Science Fund for Excellent Young Scholars (No. 62022068), and the Fundamental Research Funds for the Central Universities (Nos. 20720190055 and 20720190058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaping Wu, Xu Li or Zhiming Wu.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhang, Z., Zeng, X. et al. Direct synthesis of moiré superlattice through chemical vapor deposition growth of monolayer WS2 on plasma-treated HOPG. Nano Res. 15, 8587–8594 (2022). https://doi.org/10.1007/s12274-022-4487-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4487-z

Keywords

Navigation