Skip to main content
Log in

Metal-organic layers induce in situ nano-structuring of Cu surface in electrocatalytic CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cu-based catalysts have attracted widespread attention for its capability in electrocatalytically reducing CO2 to a variety of products. Surface modification of Cu has become an interesting method for tuning the catalytic performance. Here, we use Zr-based metal-organic layers (MOLs) as the additive of the Cu surface, which enhanced the Faradaic efficiency of CH4 by two times as compared to the untreated polycrystalline Cu foil. Unexpectedly, the MOLs were found to induce in situ nano-structuring of the Cu foil surface within seconds in the electrolysis, as revealed by a combination of scanning electron microscopy (SEM), grazing incidence X-ray diffractometry (GIXRD), and linear sweep voltammetry (LSV) measurements. These surface changes are responsible for the shift of product selectivity. Control experiments suggest that negatively charged μ3-O on the Zr-cluster in the MOL might interact with CO-covered Cu surface and induce roughing and nano-structuring. This work reveals a potential role of additive on Cu to induce surface nano-structuring that tunes catalytic activity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  Google Scholar 

  2. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

    Article  CAS  Google Scholar 

  3. Chen, X. Y.; Chen, J. F.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R. X.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20–27.

    Article  Google Scholar 

  4. Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

    Article  CAS  Google Scholar 

  5. Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

    Article  CAS  Google Scholar 

  6. Guo, Y.; He, X. R.; Su, Y. M.; Dai, Y. H.; Xie, M. C.; Yang, S. L.; Chen, J. W.; Wang, K.; Zhou, D.; Wang, C. Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. J. Am. Chem. Soc. 2021, 143, 5755–5762.

    Article  CAS  Google Scholar 

  7. Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.

    Article  CAS  Google Scholar 

  8. Han, Z. J.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T. CO2 reduction selective for C ≥ 2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 2017, 3, 853–859.

    Article  CAS  Google Scholar 

  9. Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

    Article  CAS  Google Scholar 

  10. Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

    Article  CAS  Google Scholar 

  11. Liang, H. Q.; Zhao, S. Q.; Hu, X. M.; Ceccato, M.; Skrydstrup, T.; Daasbjerg, K. Hydrophobic copper interfaces boost electroreduction of carbon dioxide to ethylene in water. ACS Catal. 2021, 11, 958–966.

    Article  CAS  Google Scholar 

  12. Wei, X.; Yin, Z. L.; Lyu, K.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 2020, 10, 4103–4111.

    Article  CAS  Google Scholar 

  13. Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.

    Article  CAS  Google Scholar 

  14. Guo, Y.; Shi, W. J.; Yang, H. J.; He, Q. F.; Zeng, Z. M.; Ye, J. Y.; He, X. R.; Huang, R. Y.; Wang, C.; Lin, W. B. Cooperative stabilization of the [pyridinium-CO2-Co] adduct on a metal-organic layer enhances electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17875–17883.

    Article  CAS  Google Scholar 

  15. Ji, P. F.; Solomon, J. B.; Lin, Z. K.; M. Wilders, A.; Jordan, R. F.; Lin, W. B. Transformation of metal-organic framework secondary building units into hexanuclear Zr-alkyl catalysts for ethylene polymerization. J. Am. Chem. Soc. 2017, 139, 11325–11328.

    Article  CAS  Google Scholar 

  16. DeStefano, M. R.; Islamoglu, T.; Garibay, S. J.; Hupp, J. T.; Farha, O. K. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chem. Mater. 2017, 29, 1357–1361.

    Article  CAS  Google Scholar 

  17. Kickelbick, G.; Wiede, P.; Schubert, U. Variations in capping the Zr6O4(OH)4 cluster core: X-ray structure analyses of [Zr6(OH)4O4(OOC-CH=CH2)10]2(μ-OOC-CH=CH2)4 and Zr6(OH)4O4(OOCR)12(PrOH) (R = Ph, CMe=CH2). Inorg. Chim. Acta 1999, 284, 1–7.

    Article  CAS  Google Scholar 

  18. Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y. S.; Jiao, F.; Xu, B. J. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 2017, 139, 3774–3783.

    Article  CAS  Google Scholar 

  19. Heyes, J.; Dunwell, M.; Xu, B. J. CO2 reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. J. Phys. Chem. C 2016, 120, 17334–17341.

    Article  CAS  Google Scholar 

  20. Malkani, A. S.; Dunwell, M.; Xu, B. J. Operando spectroscopic investigations of copper and oxide-derived copper catalysts for electrochemical CO reduction. ACS Catal. 2019, 9, 474–478.

    Article  CAS  Google Scholar 

  21. Malkani, A. S.; Li, J.; Anibal, J.; Lu, Q.; Xu, B. J. Impact of forced convection on spectroscopic observations of the electrochemical CO reduction reaction. ACS Catal. 2020, 10, 941–946.

    Article  CAS  Google Scholar 

  22. Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

    Article  CAS  Google Scholar 

  23. Handoko, A. D.; Ong, C. W.; Huang, Y.; Lee, Z. G.; Lin, L. Y.; Panetti, G. B.; Yeo, B. S. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 2016, 120, 20058–20067.

    Article  CAS  Google Scholar 

  24. Lee, S. H.; Lin, J. C.; Farmand, M.; Landers, A. T.; Feaster, J. T.; Avilés Acosta, J. E.; Beeman, J. W.; Ye, Y. F.; Yano, J.; Mehta, A. et al. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 2021, 143, 588–592.

    Article  CAS  Google Scholar 

  25. Zhu, C. Y.; Zhang, Z. B.; Zhong, L. X.; Hsu, C. S.; Xu, X. Z.; Li, Y. Z.; Zhao, S. W.; Chen, S. H.; Yu, J. Y.; Chen, S. L. et al. Product-specific active site motifs of Cu for electrochemical CO2 reduction. Chem 2021, 7, 406–420.

    Article  CAS  Google Scholar 

  26. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci. 1995, 335, 258–263.

    Article  CAS  Google Scholar 

  27. Iijima, G.; Yamaguchi, H.; Inomata, T.; Yoto, H.; Ito, M.; Masuda, H. Methanethiol SAMs induce reconstruction and formation of Cu+ on a Cu catalyst under electrochemical CO2 reduction. ACS Catal. 2020, 10, 15238–15249.

    Article  CAS  Google Scholar 

  28. Raciti, D.; Cao, L.; Livi, K. J. T.; Rottmann, P. F.; Tang, X.; Li, C. Y.; Hicks, Z.; Bowen, K. H.; Hemker, K. J.; Mueller, T. et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 2017, 7, 4467–4472.

    Article  CAS  Google Scholar 

  29. Xiong, L. K.; Zhang, X.; Chen, L.; Deng, Z.; Han, S.; Chen, Y. F.; Zhong, J.; Sun, H.; Lian, Y. B.; Yang, B. Y. et al. Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Adv. Mater. 2021, 33, 2101741.

    Article  CAS  Google Scholar 

  30. Hollins, P. The influence of surface defects on the infrared spectra of adsorbed species. Surf. Sci. Rep. 1992, 16, 51–94.

    Article  CAS  Google Scholar 

  31. Roth, J. D.; Weaver, M. J. Role of double-layer cation on the potential-dependent stretching frequencies and binding geometries of carbon monoxide at platinum-nonaqueous interfaces. Langmuir 1992, 8, 1451–1458.

    Article  CAS  Google Scholar 

  32. Zhang, L.; Li, X. X.; Lang, Z. L.; Liu, Y.; Liu, J.; Yuan, L.; Lu, W. Y.; Xia, Y. S.; Dong, L. Z.; Yuan, D. Q. et al. Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4. J. Am. Chem. Soc. 2021, 143, 3808–3816.

    Article  CAS  Google Scholar 

  33. Wang, T. T.; Zeng, Z. M.; Cao, L. Y.; Li, Z.; Hu, X. F.; An, B.; Wang, C.; Lin, W. B. A Dynamically stabilized single-nickel electrocatalyst for selective reduction of oxygen to hydrogen peroxide. Chem.—Eur. J. 2018, 24, 17011–17018.

    Article  CAS  Google Scholar 

  34. Klet, R. C.; Liu, Y. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal-organic frameworks using potentiometric acid-base titration. J. Mater. Chem. A 2016, 4, 1479–1485.

    Article  CAS  Google Scholar 

  35. Eren, B.; Zherebetskyy, D.; Patera, L. L.; Wu, C. H.; Bluhm, H.; Africh, C.; Wang, L. W.; Somorjai, G. A.; Salmeron, M. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 2016, 351, 475–478.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from the National Natural Science Foundation of China (Nos. 22125502, 22071207, 22121001, and 21721001) and NFFTBS (No. J1310024)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Chen, J., Xu, Y. et al. Metal-organic layers induce in situ nano-structuring of Cu surface in electrocatalytic CO2 reduction. Nano Res. 16, 4554–4561 (2023). https://doi.org/10.1007/s12274-022-4461-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4461-9

Keywords

Navigation