Skip to main content
Log in

Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Garnet-type oxide solid electrolytes are the critical materials for all-solid-state lithium ion batteries. Nanoscale spectroscopic analysis on solid electrolytes plays a key role in bridging the gap between microstructure and properties. In this work, Auger electron spectroscopy (AES), which can directly detect lithium element and distinguish its valence state, was applied to characterize the garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO). Different spectroscopy parameters were evaluated and optimal acquisition conditions were provided. Electron induced precipitation of lithium metal from LLZTO was observed. By exploring the influence factors of precipitation and combining transmission electron microscopy (TEM) and focused ion beam (FIB) experiments, the underlying mechanism of the phenomenon was revealed and previous controversy was resolved. The analysis method was also extended to other types of solid electrolytes, and this work provides a reference for future in-depth research on the structure–property relationship of solid electrolytes using AES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

    Article  CAS  Google Scholar 

  2. Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

    Article  CAS  Google Scholar 

  3. Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224.

    Article  CAS  Google Scholar 

  4. Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y. T.; Hood, Z. D.; Rupp, J. L. M. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239.

    Article  CAS  Google Scholar 

  5. Chen, J.; Wu, J. W.; Wang, X. D.; Zhou, A. A.; Yang, Z. L. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater. 2021, 35, 70–87.

    Article  Google Scholar 

  6. Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

    Article  CAS  Google Scholar 

  7. Lau, J.; DeBlock, R. H.; Butts, D. M.; Ashby, D. S.; Choi, C. S.; Dunn, B. S. Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 2018, 8, 1800933.

    Article  Google Scholar 

  8. Fu, K. K.; Gong, Y. H.; Liu, B. Y.; Zhu, Y. Z.; Xu, S. M.; Yao, Y. G.; Luo, W.; Wang, C. W.; Lacey, S. D.; Dai, J. Q. et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 2017, 3, e1601659.

    Article  Google Scholar 

  9. Hirayama, T.; Aizawa, Y.; Yamamoto, K.; Sato, T.; Murata, H.; Yoshida, R.; Fisher, C. A. J.; Kato, T.; Iriyama, Y. Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors. Ultramicroscopy 2017, 173, 64–70.

    Article  CAS  Google Scholar 

  10. Wolstenholme, J. Auger Electron Spectroscopy: Practical Application to Materials Analysis and Characterization of Surfaces, Interfaces, and Thin Films; Momentum Press: New York, 2015.

  11. Thomsom, M.; Baker, M.; Christine, A.; Tyson, J.; Urch, D. S. Auger electron spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1985, 41, 1361.

    Article  Google Scholar 

  12. Tang, C. Y.; Feng, L.; Haasch, R. T.; Dillon, S. J. Surface redox on Li[Ni1/3Mn1/3Co1/3]O2 characterized by in situ X-ray photoelectron spectroscopy and in situ auger electron spectroscopy. Electrochim. Acta 2018, 277, 197–204.

    Article  CAS  Google Scholar 

  13. Radvanyi, E.; De Vito, E.; Porcher, W.; Danet, J.; Desbois, P.; Colin, J. F.; Si Larbi, S. J. Study of lithiation mechanisms in silicon electrodes by auger electron spectroscopy. J. Mater. Chem. A 2013, 1, 4956–4965.

    Article  CAS  Google Scholar 

  14. Radvanyi, E.; De Vito, E.; Porcher, W.; Larbi, S. J. S. An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J. Anal. Atom. Spectrom. 2014, 29, 1120–1131.

    Article  CAS  Google Scholar 

  15. Kim, S. H.; Kim, K.; Choi, H.; Im, D.; Heo, S.; Choi, H. S. In situ observation of lithium metal plating in a sulfur-based solid electrolyte for all-solid-state batteries. J. Mater. Chem. A 2019, 7, 13650–13657.

    Article  CAS  Google Scholar 

  16. Xia, W. H.; Xu, B. Y.; Duan, H. N.; Tang, X. Y.; Guo, Y. P.; Kang, H. M.; Li, H.; Liu, H. Z. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. J. Am. Ceram. Soc. 2017, 100, 2832–2839.

    Article  CAS  Google Scholar 

  17. Pantano, C. G.; Madey, T. E. Electron beam damage in Auger electron spectroscopy. Appl. Surf. Sci. 1981, 7, 115–141.

    Article  CAS  Google Scholar 

  18. Egerton, R. F. Physical Principles of Electron Microscopy; Springer: Boston, 2005.

    Book  Google Scholar 

  19. Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: New York, 2017.

    Google Scholar 

  20. Baragiola, R. A. Principles and applications of ion-induced auger electron emission from solids. Radiat. Eff. 1982, 61, 47–72.

    Article  CAS  Google Scholar 

  21. Van Oostrom, A. Some aspects of auger microanalysis. Surf. Sci. 1979, 89, 615–634.

    Article  CAS  Google Scholar 

  22. Powell, B.; Woodruff, D.; Griffiths, B. A scanning Auger electron microscope for surface studies. J. Phys. E: Sci. Instrum. 1975, 8, 548.

    Article  CAS  Google Scholar 

  23. Seah, M. P.; Cumpson, P. J. Signal-to-noise ratio assessment and measurement in spectroscopies with particular reference to auger and X-ray photoelectron spectroscopies. J. Electron. Spectrosc. Relat. Phenom. 1993, 61, 291–308.

    Article  Google Scholar 

  24. Xie, X. W.; Xing, J. J.; Hu, D. L.; Gu, H.; Chen, C.; Guo, X. X. Lithium expulsion from the solid-state electrolyte Li6.4La3Zr1.4Ta0.6O12 by controlled electron injection in a SEM. ACS Appl. Mater. Interfaces 2018, 10, 5978–5983.

    Article  CAS  Google Scholar 

  25. Wang, H. C.; Gao, H. W.; Chen, X. X.; Zhu, J. P.; Li, W. Q.; Gong, Z. J.; Li, Y. X.; Wang, M. S.; Yang, Y. Linking the defects to the formation and growth of Li dendrite in all-solid-state batteries. Adv. Energy Mater. 2021, 11, 2102148.

    Article  CAS  Google Scholar 

  26. Krauskopf, T.; Dippel, R.; Hartmann, H.; Peppler, K.; Mogwitz, B.; Richter, F. H.; Zeier, W. G.; Janek, J. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 2019, 3, 2030–2049.

    Article  CAS  Google Scholar 

  27. Liang, C.; Zhang, X.; Xia, S. X.; Wang, Z. Y.; Wu, J. Y.; Yuan, B.; Luo, X.; Liu, W. Y.; Liu, W.; Yu, Y. Unravelling the room-temperature atomic structure and growth kinetics of lithium metal. Nat. Commun. 2020, 11, 5367.

    Article  CAS  Google Scholar 

  28. Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science; Springer-Verlag US: New York, NY, 2009.

    Book  Google Scholar 

  29. Schmitt, R. Scanning electron microscope. In CIRP Encyclopedia of Production Engineering; Chatti, S.; Laperrière, L.; Reinhart, G.; Tolio, T., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2019; pp 1501–1505.

    Chapter  Google Scholar 

  30. Postek. M. T.; Vladár, A. E. Does your SEM really tell the truth?-How would you know? Part 4: Charging and its mitigation. In Proceedings of SPIE 9636, Scanning Microscopies 2015, Monterey, 2015, pp 963605.

  31. Liu, X. M.; Garcia-Mendez, R.; Lupini, A. R.; Cheng, Y. Q.; Hood, Z. D.; Han, F. D.; Sharafi, A.; Idrobo, J. C.; Dudney, N. J.; Wang, C. S. et al. Local electronic structure variation resulting in Li “filament” formation within solid electrolytes. Nat. Mater. 2021, 20, 1485–1490.

    Article  CAS  Google Scholar 

  32. Castle, J. E.; Mallinson, C. F.; Watts, J. F. Analysis of the Li KLL auger transition on freshly exposed lithium and lithium surface oxide by AES. Surf. Sci. Spectra 2013, 20, 113–127.

    Article  Google Scholar 

  33. Ishida, N.; Fujita, D. Chemical-state imaging of Li using scanning Auger electron microscopy. J. Electron. Spectrosc. Relat. Phenom. 2013, 186, 39–43.

    Article  CAS  Google Scholar 

  34. Mukhopadhyay, S.; Thompson, T.; Sakamoto, J.; Huq, A.; Wolfenstine, J.; Allen, J. L.; Bernstein, N.; Stewart, D. A.; Johannes, M. D. Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem. Mater. 2015, 27, 3658–3665.

    Article  CAS  Google Scholar 

  35. Emery, J.; Buzare, J. Y.; Bohnke, O.; Fourquet, J. L. Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes. Solid State Ion. 1997, 99, 41–51.

    Article  CAS  Google Scholar 

  36. Li, Y. T.; Han, J. T.; Wang, C. A.; Xie, H.; Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 2012, 22, 15357–15361.

    Article  CAS  Google Scholar 

  37. Ohuchi, F.; Clark, D. E.; Hench, L. L. Effect of crystallization on the Auger electron signal decay in an Li2O·2SiO2 glass and glass-ceramic. J. Am. Ceram. Soc. 1979, 62, 500–503.

    Article  CAS  Google Scholar 

  38. Wood, K. N.; Steirer, K. X.; Hafner, S. E.; Ban, C. M.; Santhanagopalan, S.; Lee, S. H.; Teeter, G. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat. Commun. 2018, 9, 2490.

    Article  Google Scholar 

  39. Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.

    Article  CAS  Google Scholar 

  40. Vine, J.; Einstein, P. A. Heating effect of an electron beam impinging on a solid surface, allowing for penetration. Proc. Inst. Electr. Eng. 1964, 111, 921–930.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Science and Technology Plan (No. 21DZ2260400) and the startup funding from ShanghaiTech University. The electron microscopy characterization was supported by the Center for High-resolution Electron Microscopy (CħEM) at ShanghaiTech University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Yi Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhai, W., Hu, X. et al. Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes. Nano Res. 16, 4039–4048 (2023). https://doi.org/10.1007/s12274-022-4431-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4431-2

Keywords

Navigation