Skip to main content
Log in

Anomalous enhancement oxidation of few-layer MoS2 and MoS2/h-BN heterostructure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Because of profound applications of two-dimensional molybdenum disulfide (MoS2) and its heterostructures in electronics, its thermal stability has been spurred substantial interest. We employ a precision muffle furnace at a series of increasing temperatures up to 340 °C to study the oxidation behavior of continuous MoS2 films by either directly growing mono- and few-layer MoS2 on SiO2/Si substrate, or by mechanically transferring monolayer MoS2 or hexagonal boron nitride (h-BN) onto monolayer MoS2 substrate. Results show that monolayer MoS2 can withstand high temperature at 340 °C with less oxidation while the few-layer MoS2 films are completely oxidized just at 280 °C, resulting from the growth-induced tensile strain in few-layer MoS2. When the tensile strain of films is released by transfer method, the stacked few-layer MoS2 films exhibit superior thermal stability and typical layer-by-layer oxidation behavior at similarly high temperature. Counterintuitively, for the MoS2/h-BN heterostructure, the h-BN film itself stacked on top is not damaged and forms many bubbles at 340 °C, whereas the underlying monolayer MoS2 film is oxidized completely. By comprehensively using various experimental characterization and molecular dynamics calculations, such anomalous oxidation behavior of MoS2/h-BN heterostructure is mainly due to the increased tensile strain in MoS2 film at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  2. Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504.

    CAS  Google Scholar 

  3. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    CAS  Google Scholar 

  4. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  5. Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.

    Google Scholar 

  6. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

    CAS  Google Scholar 

  7. Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride—graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

    CAS  Google Scholar 

  8. Budania, P.; Baine, P.; Montgomery, J.; McGeough, C.; Cafolla, T.; Modreanu, M.; McNeill, D.; Mitchell, N.; Hughes, G.; Hurley, P. Long-term stability of mechanically exfoliated MoS2 flakes. MRS Commun. 2017, 7, 813–818.

    CAS  Google Scholar 

  9. Femi-Oyetoro, J.; Yao, K.; Hathaway, E.; Jiang, Y.; Ojo, I.; Squires, B.; Neogi, A.; Cui, J. B.; Philipose, U.; Gadiyaram, N. K. et al. Structural stability of bilayer MoS2 in ambient air. Adv. Mater. Interfaces 2021, 8, 2101188.

    CAS  Google Scholar 

  10. Yalon, E.; McClellan, C. J.; Smithe, K. K. H.; Rojo, M. M.; Xu, R. L.; Suryavanshi, S. V.; Gabourie, A. J.; Neumann, C. M.; Xiong, F.; Farimani, A. B. et al. Energy dissipation in monolayer MoS2 electronics. Nano Lett. 2017, 17, 3429–3433.

    CAS  Google Scholar 

  11. Park, S.; Garcia-Esparza, A. T.; Abroshan, H.; Abraham, B.; Vinson, J.; Gallo, A.; Nordlund, D.; Park, J.; Kim, T. R.; Vallez, L. et al. Operando study of thermal oxidation of monolayer MoS2. Adv. Sci. 2021, 8, 2002768.

    CAS  Google Scholar 

  12. Lu, X.; Utama, M. I. B.; Zhang, J.; Zhao, Y. Y.; Xiong, Q. H. Layer-by-layer thinning of MoS2 by thermal annealing. Nanoscale 2013, 5, 8904–8908.

    CAS  Google Scholar 

  13. Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J. Q.; Cao, X. H.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314–3319.

    CAS  Google Scholar 

  14. Yoon, A.; Kim, J. H.; Yoon, J.; Lee, Y.; Lee, Z. van der Waals epitaxial formation of atomic layered α-MoO3 on MoS2 by oxidation. ACS Appl. Mater. Interfaces 2020, 12, 22029–22036.

    CAS  Google Scholar 

  15. Lin, Y. K.; Chen, R. S.; Chou, T. C.; Lee, Y. H.; Chen, Y. F.; Chen, K. H.; Chen, L. C. Thickness-dependent binding energy shift in few-layer MoS2 grown by chemical vapor deposition. ACS Appl. Mater. Interfaces 2016, 8, 22637–22646.

    CAS  Google Scholar 

  16. Zhou, H. Q.; Yu, F.; Liu, Y. Y.; Zou, X. L.; Cong, C. X.; Qiu, C. Y.; Yu, T.; Yan, Z.; Shen, X. N.; Sun, L. F. et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703–711.

    CAS  Google Scholar 

  17. Spychalski, W. L.; Pisarek, M.; Szoszkiewicz, R. Microscale insight into oxidation of single MoS2 crystals in air. J. Phys. Chem. C 2017, 121, 26027–26033.

    CAS  Google Scholar 

  18. Yamamoto, M.; Einstein, T. L.; Fuhrer, M. S.; Cullen, W. G. Anisotropic etching of atomically thin MoS2. J. Phys. Chem. C 2013, 117, 25643–25649.

    CAS  Google Scholar 

  19. Ryu, Y.; Kim, W.; Koo, S.; Kang, H.; Watanabe, K.; Taniguchi, T.; Ryu, S. Interface-confined doubly anisotropic oxidation of two-dimensional MoS2. Nano Lett. 2017, 17, 7267–7273.

    CAS  Google Scholar 

  20. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    CAS  Google Scholar 

  21. Ly, T. H.; Chiu, M. H.; Li, M. Y.; Zhao, J.; Perello, D. J.; Cichocka, M. O.; Oh, H. M.; Chae, S. H.; Jeong, H. Y.; Yao, F. et al. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides. ACS Nano 2014, 8, 11401–11408.

    CAS  Google Scholar 

  22. Gao, J.; Li, B. C.; Tan, J. W.; Chow, P.; Lu, T. M.; Koratkar, N. Aging of transition metal dichalcogenide monolayers. ACS Nano 2016, 10, 2628–2635.

    CAS  Google Scholar 

  23. Ionescu, R.; George, A.; Ruiz, I.; Favors, Z.; Mutlu, Z.; Liu, C.; Ahmed, K.; Wu, R.; Jeong, J. S.; Zavala, L. et al. Oxygen etching of thick MoS2 films. Chem. Commun. 2014, 50, 11226–11229.

    CAS  Google Scholar 

  24. Lee, G. H.; Cui, X.; Kim, Y. D.; Arefe, G.; Zhang, X.; Lee, C. H.; Ye, F.; Watanabe, K.; Taniguchi, T.; Kim, P. et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 2015, 9, 7019–7026.

    CAS  Google Scholar 

  25. Yao, K.; Femi-Oyetoro, J. D.; Yao, S.; Jiang, Y.; El Bouanani, L.; Jones, D. C.; Ecton, P. A.; Philipose, U.; El Bouanani, M.; Rout, B. et al. Rapid ambient degradation of monolayer MoS2 after heating in air. 2D Mater. 2020, 7, 015024.

    CAS  Google Scholar 

  26. Şar, H.; Özden, A.; Demiroğlu, İ.; Sevik, C.; Perkgoz, N. K.; Ay, F. Long-term stability control of CVD-grown monolayer MoS2. Phys. Status Solidi RRL 2019, 13, 1800687.

    Google Scholar 

  27. Rao, R.; Islam, A. E.; Campbell, P. M.; Vogel, E. M.; Maruyama, B. In situ thermal oxidation kinetics in few layer MoS2. 2D Mater. 2017, 4, 025058.

    Google Scholar 

  28. Lin, T. Z.; Kang, B. T.; Jeon, M.; Huffman, C.; Jeon, J.; Lee, S.; Han, W.; Lee, J.; Lee, S.; Yeom, G. et al. Controlled layer-by-layer etching of MoS2. ACS Appl. Mater. Interfaces 2015, 7, 15892–15897.

    CAS  Google Scholar 

  29. Ren, S. M.; Cui, M. J.; Pu, J. B.; Xue, Q. J.; Wang, L. P. Multilayer regulation of atomic boron nitride films to improve oxidation and corrosion resistance of Cu. ACS Appl. Mater. Interfaces 2017, 9, 27152–27165.

    CAS  Google Scholar 

  30. Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazic, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

    CAS  Google Scholar 

  31. Liang, T.; Phillpot, S. R.; Sinnott, S. B. Parametrization of a reactive many-body potential for Mo—S systems. Phys. Rev. B 2009, 79, 245110.

    Google Scholar 

  32. Kınacı, A.; Haskins, J. B.; Sevik, C. Çağin, T. Thermal conductivity of BN-C nanostructures. Phys. Rev. B 2012, 86, 115410.

    Google Scholar 

  33. Dong, X.; Yan, C.; Tomer, D.; Li, C. H.; Li, L. Spiral growth of few-layer MoS2 by chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 051604.

    Google Scholar 

  34. Wang, S. S.; Rong, Y. M.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371–6379.

    CAS  Google Scholar 

  35. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    CAS  Google Scholar 

  36. Peña, T.; Chowdhury, S. A.; Azizimanesh, A.; Sewaket, A.; Askari, H.; Wu, S. M. Strain engineering 2D MoS2 with thin film stress capping layers. 2D Mater. 2021, 8, 045001.

    Google Scholar 

  37. Ren, S. M.; Li, H.; Cui, M. J.; Wang, L. P.; Pu, J. B. Functional regulation of Pb-Ti/MoS2 composite coatings for environmentally adaptive solid lubrication. Appl. Surf. Sci. 2017, 401, 362–372.

    CAS  Google Scholar 

  38. Lanzillo, N. A.; Birdwell, A. G.; Amani, M.; Crowne, F. J.; Shah, P. B.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. et al. Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 2013, 103, 093102.

    Google Scholar 

  39. Panasci, S. E.; Schilirò, E.; Greco, G.; Cannas, M.; Gelardi, F. M.; Agnello, S.; Roccaforte, F.; Giannazzo, F. Strain, doping, and electronic transport of large area monolayer MoS2 exfoliated on gold and transferred to an insulating substrate. ACS Appl. Mater. Interfaces 2021, 13, 31248–31259.

    CAS  Google Scholar 

  40. Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836–5841.

    CAS  Google Scholar 

  41. Sarkar, S.; Maity, I.; Pradeepa, H. L.; Nayak, G.; Marty, L.; Renard, J.; Coraux, J.; Bendiab, N.; Bouchiat, V.; Das, S. et al. Anharmonicity in Raman-active phonon modes in atomically thin MoS2. Phys. Rev. B 2020, 101, 205302.

    CAS  Google Scholar 

  42. Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.

    CAS  Google Scholar 

  43. Hou, C.; Deng, J. W.; Guan, J. X.; Yang, Q. R.; Yu, Z. H.; Lu, Y. L.; Xu, Z. H.; Yao, Z. F.; Zheng, J. R. Photoluminescence of monolayer MoS2 modulated by water/O2/laser irradiation. Phys. Chem. Chem. Phys. 2021, 23, 24579–24588.

    CAS  Google Scholar 

  44. Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; Van Der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.

    CAS  Google Scholar 

  45. Hussain, S.; Xu, R.; Xu, K. Q.; Lei, L.; Meng, L.; Zheng, Z. Y.; Xing, S. Y.; Guo, J. F.; Dong, H. Y.; Liaqat, A. et al. Strain-induced hierarchical ripples in MoS2 layers investigated by atomic force microscopy. Appl. Phys. Lett. 2020, 117, 153102.

    CAS  Google Scholar 

  46. Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

    Google Scholar 

  47. Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115–12123.

    CAS  Google Scholar 

  48. Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617–621.

    CAS  Google Scholar 

  49. Roy, S. S.; Arnold, M. S. Improving graphene diffusion barriers via stacking multiple layers and grain size engineering. Adv. Funct. Mater. 2013, 23, 3638–3644.

    CAS  Google Scholar 

  50. Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

    Google Scholar 

  51. Dai, Z. Y.; Wang, Z. W.; He, X.; Zhang, X. X.; Alshareef, H. N. Large-area chemical vapor deposited MoS2 with transparent conducting oxide contacts toward fully transparent 2D electronics. Adv. Funct. Mater. 2017, 27, 1703119.

    Google Scholar 

  52. Yan, A. M.; Velasco, J. Jr.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, F.; Crommie, M. F.; Zettl, A. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 2015, 15, 6324–6331.

    CAS  Google Scholar 

  53. Sevik, C. Assessment on lattice thermal properties of two-dimensional honeycomb structures: Graphene, h-BN, h-MoS2, and h-MoSe2. Phys. Rev. B 2014, 89, 035422.

    Google Scholar 

  54. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

    CAS  Google Scholar 

  55. Guo, Y.; Li, B.; Huang, Y.; Du, S.; Sun, C.; Luo, H. L.; Liu, B. L.; Zhou, X. J.; Yang, J. L.; Li, J. J. et al. Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Res. 2020, 13, 2072–2078.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52005489), Ningbo 3315 Innovation Team (No. 2020A-03-C), the China Postdoctoral Science Fund (Nos. 2021T140685 and 2019M662126), and the Natural Science Foundation of Zhejiang Province (No. LR20E050001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siming Ren or Jibin Pu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Shi, Y., Zhang, C. et al. Anomalous enhancement oxidation of few-layer MoS2 and MoS2/h-BN heterostructure. Nano Res. 15, 7081–7090 (2022). https://doi.org/10.1007/s12274-022-4384-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4384-5

Keywords

Navigation