Skip to main content
Log in

Toward batch synthesis of high-quality graphene by cold-wall chemical vapor deposition approach

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD) has emerged as a promising approach for the controlled growth of graphene films with appealing scalability, controllability, and uniformity. However, the synthesis of high-quality graphene films still suffers from low production capacity and high energy consumption in the conventional hot-wall CVD system. In contrast, owing to the different heating mode, cold-wall CVD (CW-CVD) system exhibits promising potential for the industrial-scale production, but the quality of as-received graphene remains inferior with limited domain size and high defect density. Herein, we demonstrated an efficient method for the batch synthesis of high-quality graphene films with millimeter-sized domains based on CW-CVD system. With reduced defect density and improved properties, the as-received graphene was proven to be promising candidate material for electronics and anti-corrosion application. This study provides a new insight into the quality improvement of graphene derived from CW-CVD system, and paves a new avenue for the industrial production of high-quality graphene films for potential commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  CAS  Google Scholar 

  3. Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

    Article  CAS  Google Scholar 

  4. Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

    Article  CAS  Google Scholar 

  5. Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H. L.; Lin, L.; Liu, Z. F. New growth frontier: Superclean graphene. ACS Nano 2020, 14, 10796–10803.

    Article  CAS  Google Scholar 

  6. Yuan, G. W.; Lin, D. J.; Wang, Y.; Huang, X. L.; Chen, W.; Xie, X. D.; Zong, J. Y.; Yuan, Q. Q.; Zheng, H.; Wang, D. et al. Protonassisted growth of ultra-flat graphene films. Nature 2020, 577, 204–208.

    Article  CAS  Google Scholar 

  7. Kong, W.; Kum, H.; Bae, S. H.; Shim, J.; Kim, H.; Kong, L. P.; Meng, Y.; Wang, K. J.; Kim, C.; Kim, J. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 2019, 14, 927–938.

    Article  CAS  Google Scholar 

  8. Jia, K. C.; Zhang, J. C.; Zhu, Y. S.; Sun, L. Z.; Lin, L.; Liu, Z. F. Toward the commercialization of chemical vapor deposition graphene films. Appl. Phys. Rev. 2021, 8, 041306.

    Article  CAS  Google Scholar 

  9. Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

    Article  CAS  Google Scholar 

  10. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  CAS  Google Scholar 

  11. Xu, J. B.; Hu, J. X.; Li, Q.; Wang, R. B.; Li, W. W.; Guo, Y. F.; Zhu, Y. B.; Liu, F. K.; Ullah, Z.; Dong, G. C. et al. Fast batch production of high-quality graphene films in a sealed thermal molecular movement system. Small 2017, 13, 1700651.

    Article  CAS  Google Scholar 

  12. Zhang, Y. N.; Huang, D. P.; Duan, Y. W.; Chen, H.; Tang, L. L.; Shi, M. Q.; Li, Z. C.; Shi, H. F. Batch production of uniform graphene films via controlling gas-phase dynamics in confined space. Nanotechnology 2021, 32, 105603.

    Article  CAS  Google Scholar 

  13. Jo, I.; Park, S.; Kim, D.; Moon, J. S.; Park, W. B.; Kim, T. H.; Kang, J. H.; Lee, W.; Kim, Y.; Lee, D. N. et al. Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films. 2D Mater. 2018, 5, 024002.

    Article  CAS  Google Scholar 

  14. Kobayashi, T.; Bando, M.; Kimura, N.; Shimizu, K.; Kadono, K.; Umezu, N.; Miyahara, K.; Hayazaki, S.; Nagai, S.; Mizuguchi, Y. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 2013, 102, 023112.

    Article  CAS  Google Scholar 

  15. Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

    Article  CAS  Google Scholar 

  16. Jia, K. C.; Ci, H. N.; Zhang, J. C.; Sun, Z. T.; Ma, Z. T.; Zhu, Y. S.; Liu, S. N.; Liu, J. L.; Sun, L. Z.; Liu, X. T. et al. Superclean growth of graphene using a cold-wall chemical vapor deposition approach. Angew. Chem., Int. Ed. 2020, 59, 17214–17218.

    Article  CAS  Google Scholar 

  17. Kim, S. M.; Kim, J. H.; Kim, K. S.; Hwangbo, Y.; Yoon, J. H.; Lee, E. K.; Ryu, J.; Lee, H. J.; Cho, S.; Lee, S. M. Synthesis of CVD-graphene on rapidly heated copper foils. Nanoscale 2014, 6, 4728–4734.

    Article  CAS  Google Scholar 

  18. Alnuaimi, A.; Almansouri, I.; Saadat, I.; Nayfeh, A. Toward fast growth of large area high quality graphene using a cold-wall CVD reactor. RSC Adv. 2017, 7, 51951–51957.

    Article  CAS  Google Scholar 

  19. Bointon, T. H.; Barnes, M. D.; Russo, S.; Craciun, M. F. High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition. Adv. Mater. 2015, 27, 4200–4206.

    Article  CAS  Google Scholar 

  20. Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

    Article  CAS  Google Scholar 

  21. Ma, T.; Liu, Z. B.; Wen, J. X.; Gao, Y.; Ren, X. B.; Chen, H. J.; Jin, C. H.; Ma, X. L.; Xu, N. S.; Cheng, H. M. et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 2017, 8, 14486.

    Article  CAS  Google Scholar 

  22. Ryu, J.; Kim, Y.; Won, D.; Kim, N.; Park, J. S.; Lee, E. K.; Cho, D.; Cho, S. P.; Kim, S. J.; Ryu, G. H. et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 2011, 8, 950–956.

    Article  CAS  Google Scholar 

  23. Luo, B. R.; Whelan, P. R.; Shivayogimath, A.; Mackenzie, D. M. A.; Bøggild, P.; Booth, T. J. Copper oxidation through nucleation sites of chemical vapor deposited graphene. Chem. Mater. 2016, 28, 3789–3795.

    Article  CAS  Google Scholar 

  24. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  CAS  Google Scholar 

  25. Shah, S.; Chiou, Y. C.; Lai, C. Y.; Apostoleris, H.; Rahman, M.; Younes, H.; Almansouri, I.; Al Ghaferi, A.; Chiesa, M. Impact of short duration, high-flow H2 annealing on graphene synthesis and surface morphology with high spatial resolution assessment of coverage. Carbon 2017, 125, 318–326.

    Article  CAS  Google Scholar 

  26. Arjmandi-Tash, H.; Lebedev, N.; van Deursen, P. M. G.; Aarts, J.; Schneider, G. F. Hybrid cold and hot-wall reaction chamber for the rapid synthesis of uniform graphene. Carbon 2017, 118, 438–442.

    Article  CAS  Google Scholar 

  27. Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

    Article  CAS  Google Scholar 

  28. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  CAS  Google Scholar 

  29. Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024.

    Article  CAS  Google Scholar 

  30. Piner, R.; Li, H. F.; Kong, X. H.; Tao, L.; Kholmanov, I. N.; Ji, H. X.; Lee, W. H.; Suk, J. W.; Ye, J.; Hao, Y. F. et al. Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano 2013, 7, 7495–7499.

    Article  CAS  Google Scholar 

  31. Miseikis, V.; Bianco, F.; David, J.; Gemmi, M.; Pellegrini, V.; Romagnoli, M.; Coletti, C. Deterministic patterned growth of high-mobility large-crystal graphene: A path towards wafer scale integration. 2D Mater. 2017, 4, 021004.

    Article  CAS  Google Scholar 

  32. Lin, L.; Li, J. Y.; Ren, H. Y.; Koh, A. L.; Kang, N.; Peng, H. L.; Xu, H. Q.; Liu, Z. F. Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 2016, 10, 2922–2929.

    Article  CAS  Google Scholar 

  33. Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015, 1, e1500222.

    Article  Google Scholar 

  34. Zhao, Z. J.; Hou, T. Y.; Wu, N. N.; Jiao, S. P.; Zhou, K.; Yin, J.; Suk, J. W.; Cui, X.; Zhang, M. F.; Li, S. P. et al. Polycrystalline few-layer graphene as a durable anticorrosion film for copper. Nano Lett. 2021, 21, 1161–1168.

    Article  CAS  Google Scholar 

  35. Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

    Article  Google Scholar 

  36. Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv. Mater. 2018, 30, 1702944.

    Article  CAS  Google Scholar 

  37. Kirkland, N. T.; Schiller, T.; Medhekar, N.; Birbilis, N. Exploring graphene as a corrosion protection barrier. Corros. Sci. 2012, 56, 1–4.

    Article  CAS  Google Scholar 

  38. Ye, X. H.; Lin, Z.; Zhang, H. J.; Zhu, H. W.; Liu, Z.; Zhong, M. L. Protecting carbon steel from corrosion by laser in situ grown graphene films. Carbon 2015, 94, 326–334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. T2188101, 21525310, and 52072042), the National Key R&D Program of China (No. 2018YFA0703502), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001), and Beijing Municipal Science & Technology Commission (Nos. Z181100004818001, Z18110300480001, Z18110300480002, Z191100000819005, Z191100000819007, and Z201100008720005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jincan Zhang, Li Lin or Zhongfan Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, K., Ma, Z., Wang, W. et al. Toward batch synthesis of high-quality graphene by cold-wall chemical vapor deposition approach. Nano Res. 15, 9683–9688 (2022). https://doi.org/10.1007/s12274-022-4347-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4347-x

Keywords

Navigation