Skip to main content

CVD Growth of High-Quality Single-Layer Graphene

  • Chapter
  • First Online:
Frontiers of Graphene and Carbon Nanotubes

Abstract

To utilize the unique and excellent properties of graphene, synthesis of highly crystalline, large-area graphene is necessary. Among various methods to produce graphene, chemical vapor deposition (CVD) using hydrocarbon molecules in the presence of metal catalyst has shown significant progress due to the large-area availability and low cost. In this section, after a review of the growth methods of graphene with the main focus on CVD, our research on the CVD growth of high-quality graphene over heteroepitaxial metal films and domain structure analysis is presented. Recent development of the CVD growth of single-crystalline graphene as well as large-area growth based on roll-to-roll processes is also reviewed together with future prospect of graphene research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2009) The rise of graphene. Nat Mater 6:183

    Article  Google Scholar 

  2. Warner JH, Schaffel F, Rummeli M, Bachmatiuk A (2012) Graphene: fundamentals and emergent applications. Elsevier, Oxford

    Google Scholar 

  3. Rao CNR, Sood AK (eds) (2013) Graphene: synthesis, properties, and phenomena. Wiley, Weinheim

    Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  Google Scholar 

  5. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191

    Article  Google Scholar 

  6. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203

    Article  Google Scholar 

  7. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394

    Article  Google Scholar 

  8. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270

    Article  Google Scholar 

  9. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103

    Article  Google Scholar 

  10. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30

    Article  Google Scholar 

  11. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312

    Article  Google Scholar 

  12. Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324

    Article  Google Scholar 

  13. Ago H, Ogawa Y, Tsuji M, Mizuno S, Hibino H (2012) Catalytic growth of graphene: toward large-area single-crystalline graphene. J Phys Chem Lett 3:2228

    Article  Google Scholar 

  14. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Özyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574

    Article  Google Scholar 

  15. Huang PY, Vargas CSR, Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389

    Article  Google Scholar 

  16. Kim K, Artyukhov VI, Regan W, Liu Y, Crommie MF, Yakobson BI, Zettl A (2012) Ripping graphene: preferred directions. Nano Lett 12:293

    Article  Google Scholar 

  17. Sun J, Lindvall N, Cole MT, Teo KBK, Yurgens A (2011) Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride. Appl Phys Lett 98:252107

    Article  Google Scholar 

  18. Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda K, Mizuno S (2010) Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4:7407

    Article  Google Scholar 

  19. Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K, Mizuno S (2012) Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 50:57

    Article  Google Scholar 

  20. Orofeo CM, Hibino H, Kawahara K, Ogawa Y, Tsuji M, Ikeda K, Mizuno S, Ago H (2012) Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50:2189

    Article  Google Scholar 

  21. Ogawa Y, Hu B, Orofeo CM, Tsuji M, Ikeda K, Mizuno S, Hibino H, Ago H (2012) Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. J Phys Chem Lett 3:219

    Article  Google Scholar 

  22. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  Google Scholar 

  23. Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443

    Article  Google Scholar 

  24. Ago H, Kawahara K, Ogawa Y, Tanoue S, Bissett MA, Tsuji M, Sakaguchi H, Koch RJ, Fromm F, Seyller T, Komatsu K, Tsukagoshi K (2013) Epitaxial growth and electronic properties of large hexagonal graphene domains on Cu(111) thin film. Appl Phys Express 6:75101

    Article  Google Scholar 

  25. Ogawa Y, Komatsu K, Kawahara K, Tsuji M, Tsukagoshi K, Ago H (2014) Structure and transport properties of the interface between CVD-grown graphene domains. Nanoscale 6:7288

    Article  Google Scholar 

  26. Ago H, Kawahara K, Tsuji M, unpublished

    Google Scholar 

  27. Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6:9110

    Article  Google Scholar 

  28. Hao Y, Bharathi MS,Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang YW, Kim P, Hone J, Colombo L, Ruoff RS (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720

    Article  Google Scholar 

  29. Yamada T, Ishihara M, Kim J, Hasegawa M, Iijima S (2012) A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature. Carbon 50:2615

    Article  Google Scholar 

  30. Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y, Murakami Y, Hobara D (2013) Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 102:23112

    Article  Google Scholar 

  31. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722

    Article  Google Scholar 

  32. Wang QH, Zadeh KK, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699

    Article  Google Scholar 

  33. Ge W, Kawahara K, Tsuji M, Ago H (2013) Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale 5:5773

    Article  Google Scholar 

  34. Shi Y, Zhou W, Lu AY, Fang W, Lee YH, Hsu AL, Kim SM, Kim KK, Yang HY, Li LJ, Idrobo JC, Kong J (2012) van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett 12:2784

    Article  Google Scholar 

  35. Yang W, Chen G, Shi Z, Liu CC, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G (2013) Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater 12:792

    Article  Google Scholar 

  36. Ago H, Endo H, Solís Fernández P, Takizawa R, Ohta Y, Fujita Y, Yamamoto K, Tsuji M (2015) Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene, submitted

    Google Scholar 

Download references

Acknowledgments

The author acknowledges my group members as well as Prof. M. Tsuji, Dr. H. Hibino, Prof. S. Mizuno, Dr. K. Tsukagoshi, and Dr. K. Ikeda for collaborations. Our work is supported by JSPS funding program for Next Generation World-Leading Researchers (NEXT) and PRESTO-JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ago, H. (2015). CVD Growth of High-Quality Single-Layer Graphene. In: Matsumoto, K. (eds) Frontiers of Graphene and Carbon Nanotubes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55372-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55372-4_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55371-7

  • Online ISBN: 978-4-431-55372-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics