Skip to main content
Log in

Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, group-IVB semiconducting transition metal dichalcogenides (TMDs) of ZrS2 have attracted significant research interest due to its layered nature, moderate band gap, and extraordinary physical properties. Most device applications require a deposition of high quality large-area uniform ZrS2 single crystalline films, which has not yet been achieved. In this work, for the first time, we demonstrate the epitaxial growth of high quality large-area uniform ZrS2 films on c-plane sapphire substrates by chemical vapor deposition. An atomically sharp interface is observed due to the supercell matching between ZrS2 and sapphire, and their epitaxial relationship is found to be ZrS2 (0001)[101̄0]∥Al2O3 (0001)[112̄0]. The epitaxial ZrS2 film exhibits n-type semiconductor behavior with a room temperature mobility of 2.4 cm2·V−1·s−1, and the optical phonon is the dominant scattering mechanism at room temperature or above. Furthermore, the optoelectronic applications of ZrS2 films are demonstrated by fabricating photodetector devices. The ZrS2 photodetectors exhibit the excellent comprehensive performance, such as a light on/off ratio of 106 and a specific detectivity of 2.6 × 1012 Jones, which are the highest values compared with the photodetectors based on other group-IVB two-dimensional TMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

    Article  CAS  Google Scholar 

  2. Zhou, J. D.; Lin, J. J.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  CAS  Google Scholar 

  3. Shivayogimath, A.; Thomsen, J. D.; Mackenzie, D. M. A.; Geisler, M.; Stan, R. M.; Holt, A. J.; Bianchi, M.; Crovetto, A.; Whelan, P. R.; Carvalho, A. et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat. Commun. 2019, 10, 2957.

    Article  Google Scholar 

  4. Wu, M.; Xiao, Y. H.; Zeng, Y.; Zhou, Y. L.; Zeng, X. B.; Zhang, L. N.; Liao, W. G. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 362–396.

    Article  CAS  Google Scholar 

  5. Hoang, A. T.; Qu, K. R.; Chen, X.; Ahn, J. H. Large-area synthesis of transition metal dichalcogenides via CVD and solution-based approaches and their device applications. Nanoscale 2021, 13, 615–633.

    Article  CAS  Google Scholar 

  6. Yan, C. Y.; Gong, C. H.; Wangyang, P.; Chu, J. W.; Hu, K.; Li, C. B.; Wang, X. P.; Du, X. C.; Zhai, T. Y.; Li, Y. R. et al. 2D group IVB transition metal dichalcogenides. Adv. Funct. Mater. 2018, 28, 1803305.

    Article  Google Scholar 

  7. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  CAS  Google Scholar 

  8. Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

    Article  CAS  Google Scholar 

  9. Guo, H. Y.; Lu, N.; Wang, L.; Wu, X. J.; Zeng, X. C. Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J. Phys. Chem. C 2014, 118, 7242–7249.

    Article  CAS  Google Scholar 

  10. Lv, H. Y.; Lu, W. J.; Shao, D. F.; Lu, H. Y.; Sun, Y. P. Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C 2016, 4, 4538–4545.

    Article  CAS  Google Scholar 

  11. Shimazu, Y.; Fujisawa, Y.; Arai, K.; Iwabuchi, T.; Suzuki, K. Synthesis and characterization of zirconium disulfide single crystals and thin-film transistors based on multilayer zirconium disulfide flakes. ChemNanoMat 2018, 4, 1078–1082.

    Article  CAS  Google Scholar 

  12. Li, L.; Fang, X. S.; Zhai, T. Y.; Liao, M. Y.; Gautam, U. K; Wu, X. C.; Koide, Y. S.; Bando, Y.; Golberg, D. Electrical transport and high-performance photoconductivity in individual ZrS2 nanobelts. Adv. Mater. 2010, 22, 4151–4156.

    Article  CAS  Google Scholar 

  13. Jang, J. T.; Jeong, S.; Seo, J. W.; Kim, M. C.; Sim, E.; Oh, Y.; Nam, S.; Park, B.; Cheon, J. Ultrathin zirconium disulfide nanodiscs. J. Am. Chem. Soc. 2011, 133, 7636–7639.

    Article  CAS  Google Scholar 

  14. Hamada, M.; Matsuura, K.; Hamada, T.; Muneta, I.; Kakushima, K.; Tsutsui, K.; Wakabayashi, H. ZrS2 symmetrical-ambipolar FETs with near-midgap TiN film for both top-gate electrode and Schottky-barrier contact. Jpn. J. Appl. Phys. 2021, 60, SBBH05.

    Article  CAS  Google Scholar 

  15. Zhang, M.; Zhu, Y. M.; Wang, X. S.; Feng, Q. L.; Qiao, S. L.; Wen, W.; Chen, Y. F.; Cui, M. H.; Zhang, J.; Cai, C. Z. et al. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 2015, 137, 7051–7054.

    Article  CAS  Google Scholar 

  16. Wang, X. T.; Huang, L.; Jiang, X. W.; Li, Y.; Wei, Z. M.; Li, J. B. Large scale ZrS2 atomically thin layers. J. Mater. Chem. C 2016, 4, 3143–3148.

    Article  CAS  Google Scholar 

  17. Zhu, Y. M.; Wang, X. S.; Zhang, M.; Cai, C. Z.; Xie, L. M. Thickness and temperature dependent electrical properties of ZrS2 thin films directly grown on hexagonal boron nitride. Nano Res. 2016, 9, 2931–2937.

    Article  CAS  Google Scholar 

  18. Mattinen, M.; Popov, G.; Vehkamaki, M.; King, P. J.; Mizohata, K.; Jalkanen, P.; Räisänen, J.; Leskelä, M.; Ritala, M. Atomic layer deposition of emerging 2D semiconductors, HfS2 and ZrS2, for optoelectronics. Chem. Mater. 2019, 31, 5713–5724.

    Article  CAS  Google Scholar 

  19. Mattinen, M.; King, P. J.; Popov, G.; Hämäläinen, J.; Heikkilä, M. J.; Leskelä, M.; Ritala, M. Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditions. 2D Mater. 2020, 7, 011003.

    Article  CAS  Google Scholar 

  20. Dang, V. Q.; Al-Ali, K. The synthesis and investigation of the reversible conversion of layered ZrS2 and ZrS3. New J. Chem. 2020, 44, 7583–7590.

    Article  CAS  Google Scholar 

  21. Huang, Z. S.; Zhang, W. X.; Zhang, W. L. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 2016, 9, 716.

    Article  Google Scholar 

  22. Whitehouse, C. R.; Rimmington, H. P. R.; Balchin, A. A. Growth conditions and crystal structure parameters of layer compounds in the series ZrSxSe2−x. Phys. Status Solidi A 1973, 18, 623–631.

    Article  CAS  Google Scholar 

  23. Roubi, L.; Carlone, C. Resonance Raman spectrum of HfS2 and ZrS2. Phys. Rev. B 1988, 37, 6808–6812.

    Article  CAS  Google Scholar 

  24. Mañas-Valero, S.; García-López, V.; Cantarero, A.; Galbiati, M. Raman spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers. Appl. Sci. 2016, 6, 264.

    Article  Google Scholar 

  25. Moustafa, M.; Zandt, T.; Janowitz, C.; Manzke, R. Growth and band gap determination of the ZrSxSe2−x single crystal series. Phys. Rev. B 2009, 80, 035206.

    Article  Google Scholar 

  26. Jiang, H. Structural and electronic properties of ZrX2 and HfX2 (X = S and Se) from first principles calculations. J. Chem. Phys. 2011, 134, 204705.

    Article  Google Scholar 

  27. Greenaway, D. L.; Nitsche, R. Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 1965, 26, 1445–1458.

    Article  CAS  Google Scholar 

  28. Abdulsalam, M.; Joubert, D. P. Optical spectrum and excitons in bulk and monolayer MX2 (M = Zr, Hf; X = S, Se). Phys. Status Solidi B 2016, 253, 705–711.

    Article  CAS  Google Scholar 

  29. Ahmad, S.; D’Souza, R.; Mukherjee, S. Band gap modulation of ZrX2 (X = S, Se, Te) mono-layers under biaxial strain and transverse electric field and its lattice dynamic properties: A first principles study. Mater. Res. Express 2019, 6, 036308.

    Article  Google Scholar 

  30. Wang, D. G.; Zhang, X. W.; Liu, H.; Meng, J. H.; Xia, J.; Yin, Z. G.; Wang, Y.; You, J. B.; Meng, X. M. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors. 2D Mater. 2017, 4, 031012.

    Article  Google Scholar 

  31. Wang, D. G.; Zhang, X. W.; Guo, G. C.; Gao, S. H.; Li, X. X.; Meng, J. H.; Yin, Z. G.; Liu, H.; Gao, M. L.; Cheng, L. K. et al. Large-area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 2018, 30, 1803285.

    Article  Google Scholar 

  32. Tian, Y.; Zheng, M. Y.; Cheng, Y.; Yin, Z. G.; Jiang, J.; Wang, G. K.; Chen, J. R.; Li, X. X.; Qi, J.; Zhang, X. W. Epitaxial growth of ZrSe2 nanosheets on sapphire via chemical vapor deposition for optoelectronic application. J. Mater. Chem. C 2021, 9, 13954–13962.

    Article  CAS  Google Scholar 

  33. Petritz, R. L.; Scanlon, W. W. Mobility of electrons and holes in the polar crystal, PbS. Phys. Rev. 1955, 97, 1620–1626.

    Article  CAS  Google Scholar 

  34. Oliver, S. M.; Fox, J. J.; Hashemi, A.; Singh, A.; Cavalero, R. L.; Yee, S.; Snyder, D. W.; Jaramillo, R.; Komsa, H. P.; Vora, P. M. Phonons and excitons in ZrSe2−ZrS2 alloys. J. Mater. Chem. C 2020, 8, 5732–5743.

    Article  CAS  Google Scholar 

  35. Ao, L.; Pham, A.; Xiao, H. Y.; Zu, X. T.; Li, S. Engineering the electronic and magnetic properties of d0 2D dichalcogenide materials through vacancy doping and lattice strains. Phys. Chem. Chem. Phys. 2016, 78, 7163–7168.

    Article  Google Scholar 

  36. Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.

    Article  Google Scholar 

  37. Talib, M.; Tripathi, N.; Sharma, P.; Hasan, P. M. Z.; Melaibari, A. A.; Darwesh, R.; Arsenin, A. V.; Volkov, V. S.; Yakubovsky, D. I.; Kumar, S. et al. Development of ultra-sensitive broadband photodetector: A detailed study on hidden photodetection-properties of TiS2 nanosheets. J. Mater. Res. Technol. 2021, 14, 1243–1254.

    Article  CAS  Google Scholar 

  38. Walmsley, T. S.; Xu, Y. Q. Enhanced photocurrent response speed in charge-density-wave phase of TiSe2-metal junctions. Nanoscale 2021, 13, 11836–11843.

    Article  CAS  Google Scholar 

  39. Wang, D. G.; Meng, J. H.; Zhang, X. W.; Guo, G. C.; Yin, Z. G.; Liu, H.; Cheng, L. K.; Gao, M. L.; You, J. B.; Wang, R. Z. Selective direct growth of atomic layered HfS2 on hexagonal boron nitride for high performance photodetectors. Chem. Mater. 2018, 30, 3819–3826.

    Article  CAS  Google Scholar 

  40. Zheng, B. J.; Chen, Y. F.; Wang, Z. G.; Qi, F.; Huang, Z. S.; Hao, X.; Li, P. J.; Zhang, W. L.; Li, Y. R. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater. 2016, 3, 035024.

    Article  Google Scholar 

  41. Yin, L.; Xu, K.; Wen, Y.; Wang, Z. X.; Huang, Y.; Wang, F.; Shifa, T. A.; Cheng, R. Q.; Ma, H.; He, J. Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 2016, 109, 213105.

    Article  Google Scholar 

  42. Guo, F. W.; Yang, B.; Yuan, Y. B.; Xiao, Z. G.; Dong, Q. F.; Bi, Y.; Huang, J. S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802.

    Article  CAS  Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  44. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61874106) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB43000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Yin or Xingwang Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Cheng, Y., Huang, J. et al. Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics. Nano Res. 15, 6628–6635 (2022). https://doi.org/10.1007/s12274-022-4308-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4308-4

Keywords

Navigation