Skip to main content
Log in

Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic water splitting into hydrogen is one of the most favorable approaches to produce renewable energy. MoS2 has received great research attention for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) due to its unique structure and ability to be chemically modified, enabling its electrocatalytic activity to be further enhanced or made comparable to that of Pt-based materials. In this review, we discuss the important fabrication approaches of MoS2 ultrathin nanosheet (MoS2 NS) to improve the intrinsic catalytic activity of bulk MoS2. Moreover, several modification strategies involve either morphology modulation or electron structural modulation to improve the charge transfer kinetics, including doping, vacancy, and heterojunction construction or single-atom anchor. Our perspectives on the key challenges and future directions of developing high-performance MoS2-based electrocatalysts for overall water splitting are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    CAS  Google Scholar 

  2. Wang, Q. L.; Xu, C. Q.; Liu, W.; Hung, S. F.; Yang, H. B.; Gao, J. J.; Cai, W. Z.; Chen, H. M.; Li, J.; Liu, B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat. Commun. 2020, 11, 4246.

    CAS  Google Scholar 

  3. Ye, S.; Shi, W. W.; Liu, Y.; Li, D. F.; Yin, H.; Chi, H. B.; Luo, Y. L.; Ta, N.; Fan, F. T.; Wang, X. L. et al. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency. J. Am. Chem. Soc. 2021, 143, 12499–12508.

    CAS  Google Scholar 

  4. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    CAS  Google Scholar 

  5. Li, X. P.; Zheng, L. R.; Liu, S. J.; Ouyang, T.; Ye, S. Y.; Liu, Z. Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2021.12.095.

  6. Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

    CAS  Google Scholar 

  7. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d Orbital hybridization induced by a monodispersed ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

    CAS  Google Scholar 

  8. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    CAS  Google Scholar 

  9. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    CAS  Google Scholar 

  10. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.

  11. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    CAS  Google Scholar 

  12. You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

    CAS  Google Scholar 

  13. Guo, D. Z.; Li, X.; Jiao, Y. Q.; Yan, H. J.; Wu, A. P.; Yang, G. C.; Wang, Y.; Tian, C. G.; Fu, H. G. A dual-active Co−CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Res. 2022, 15, 238–247.

    CAS  Google Scholar 

  14. Gong, M.; Zhou, W.; Kenney, M. J.; Kapusta, R.; Cowley, S.; Wu, Y. P.; Lu, B. G.; Lin, M. C.; Wang, D. Y.; Yang, J. et al. Blending Cr2O3 into a NiO−Ni electrocatalyst for sustained water splitting. Angew. Chem., Int. Ed. 2015, 54, 11989–11993.

    CAS  Google Scholar 

  15. Dionigi, F.; Zhu, J.; Zeng, Z. H.; Merzdorf, T.; Sarodnik, H.; Gliech, M.; Pan, L. J.; Li, W. X.; Greeley, J.; Strasser, P. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides. Angew. Chem., Int. Ed. 2021, 60, 14446–14457.

    CAS  Google Scholar 

  16. Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.

    CAS  Google Scholar 

  17. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T−WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    CAS  Google Scholar 

  18. Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

    Google Scholar 

  19. Miao, R.; Dutta, B.; Sahoo, S.; He, J. K.; Zhong, W.; Cetegen, S. A.; Jiang, T.; Alpay, S. P.; Suib, S. L. Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 13604–13607.

    CAS  Google Scholar 

  20. Tan, Y. W.; Wang, H.; Liu, P.; Shen, Y. H.; Cheng, C.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 2016, 9, 2257–2261.

    CAS  Google Scholar 

  21. Li, Y.; Dong, Z. H.; Jiao, L. F. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104.

    CAS  Google Scholar 

  22. Gao, R.; Dai, Q. B.; Du, F.; Yan, D. P.; Dai, L. M. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 11658–11666.

    CAS  Google Scholar 

  23. Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

    CAS  Google Scholar 

  24. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    CAS  Google Scholar 

  25. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    CAS  Google Scholar 

  26. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. in press, https://doi.org/10.1002/anie.202200366.

  27. Zhang, P.; Xiang, H. Y.; Tao, L.; Dong, H. J.; Zhou, Y. G.; Hu, T. S.; Chen, X. L.; Liu, S.; Wang, S. Y.; Garaj, S. Chemically activated MoS2 for efficient hydrogen production. Nano Energy 2019, 57, 535–541.

    CAS  Google Scholar 

  28. Anjum, M. A. R.; Jeong, H. Y.; Lee, M. H.; Shin, H. S.; Lee, J. S. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites. Adv. Mater. 2018, 30, 1707105.

    Google Scholar 

  29. Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

    CAS  Google Scholar 

  30. Shah, S. A.; Shen, X. P.; Xie, M. H.; Zhu, G. X.; Ji, Z. Y.; Zhou, H. B.; Xu, K. Q.; Yue, X. Y.; Yuan, A. H.; Zhu, J. et al. Nickel@nitrogen-doped carbon@MoS2 nanosheets: An efficient electrocatalyst for hydrogen evolution reaction. Small 2019, 15, 1804545.

    Google Scholar 

  31. Nguyen, D. C.; Tran, D. T.; Doan, T. L. L.; Kim, D. H.; Kim, N. H.; Lee, J. H. Rational design of core@shell structured CoSx@Cu2MoS4 hybridized MoS2/N, S-codoped graphene as advanced electrocatalyst for water splitting and Zn-air battery. Adv. Energy Mater. 2020, 10, 1903289.

    CAS  Google Scholar 

  32. Zhang, J. F.; Wang, Y.; Cui, J. W.; Wu, J. J.; Li, Y.; Zhu, T. Y.; Kang, H. R.; Yang, J. P.; Sun, J.; Qin, Y. Q. et al. Water-soluble defect-rich MoS2 ultrathin nanosheets for enhanced hydrogen evolution. J. Phys. Chem. Lett. 2019, 10, 3282–3289.

    CAS  Google Scholar 

  33. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

    CAS  Google Scholar 

  34. Zhu, D. D.; Liu, J. L.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Engineering 2D metal-organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small 2019, 15, 1805511.

    Google Scholar 

  35. Dimple; Jena, N.; Rawat, A.; Ahammed, R.; Mohanta, M. K.; De Sarkar, A. Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting group IVB dichalcogenide monolayers. J. Mater. Chem. A 2018, 6, 24885–24898.

    CAS  Google Scholar 

  36. Zhang, S.; Deng, Q. C.; Shangguan, H. J.; Zheng, C.; Shi, J.; Huang, F. H.; Tang, B. Design and preparation of carbon nitride-based amphiphilic Janus N-doped carbon/MoS2 nanosheets for interfacial enzyme nanoreactor. ACS Appl. Mater. Interfaces 2020, 12, 12227–12237.

    CAS  Google Scholar 

  37. Nguyen, D. C.; Doan, T. L. L.; Prabhakaran, S.; Tran, D. T.; Kim, D. H.; Lee, J. H.; Kim, N. H. Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR. Nano Energy 2021, 82, 105750.

    CAS  Google Scholar 

  38. Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 7395–7398.

    CAS  Google Scholar 

  39. Gong, F. L.; Liu, M. M.; Ye, S.; Gong, L. H.; Zeng, G.; Xu, L.; Zhang, X. L.; Zhang, Y. H.; Zhou, L. M.; Fang, S. M. et al. All-pH stable sandwich-structured MoO2/MoS2/C hollow nanoreactors for enhanced electrochemical hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2101715.

    CAS  Google Scholar 

  40. Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.

    CAS  Google Scholar 

  41. Qin, Q.; Chen, L. L.; Wei, T.; Liu, X. E. MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor. Small 2019, 15, 1803639.

    Google Scholar 

  42. Zhang, Q. Q.; Bai, H.; Zhang, Q.; Ma, Q.; Li, Y. H.; Wan, C. Q.; Xi, G. C. MoS2 yolk-shell microspheres with a hierarchical porous structure for efficient hydrogen evolution. Nano Res. 2016, 9, 3038–3047.

    CAS  Google Scholar 

  43. Gong, F. L.; Ye, S.; Liu, M. M.; Zhang, J. W.; Gong, L. H.; Zeng, G.; Meng, E. C.; Su, P. P.; Xie, K. F.; Zhang, Y. H. et al. Boosting electrochemical oxygen evolution over yolk-shell structured O−MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy 2020, 78, 105284.

    CAS  Google Scholar 

  44. Hu, H.; Han, L.; Yu, M. Z.; Wang, Z. Y.; Lou, X. W. Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 2016, 9, 107–111.

    CAS  Google Scholar 

  45. Wan, Y.; Zhang, Z. Y.; Xu, X. L.; Zhang, Z. H.; Li, P.; Fang, X.; Zhang, K.; Yuan, K.; Liu, K. H.; Ran, G. Z. et al. Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy 2018, 51, 786–792.

    Google Scholar 

  46. Li, Y.; Zuo, S. W.; Li, Q. H.; Wu, X.; Zhang, J.; Zhang, H. B.; Zhang, J. Vertically aligned MoS2 with in-plane selectively cleaved Mo−S bond for hydrogen production. Nano Lett. 2011, 21, 1848–1855.

    Google Scholar 

  47. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-watersplitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

    CAS  Google Scholar 

  48. Yu, X. Y.; Feng, Y.; Jeon, Y.; Guan, B. Y.; Lou, X. W.; Paik, U. Formation of Ni−Co−MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 2016, 28, 9006–9011.

    CAS  Google Scholar 

  49. Lin, J. H.; Wang, P. C.; Wang, H. H.; Li, C.; Si, X. Q.; Qi, J. L.; Cao, J.; Zhong, Z. X.; Fei, W. D.; Feng, J. C. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246.

    Google Scholar 

  50. Lu, A. Y.; Yang, X. L.; Tseng, C. C.; Min, S. X.; Lin, S. H.; Hsu, C. L.; Li, H. N.; Idriss, H.; Kuo, J. L.; Huang, K. W. et al. High-sulfur-vacancy amorphous molybdenum sulfide as a high current electrocatalyst in hydrogen evolution. Small 2016, 12, 5530–5537.

    CAS  Google Scholar 

  51. Tan, C. L.; Luo, Z. M.; Chaturvedi, A.; Cai, Y. Q.; Du, Y. H.; Gong, Y.; Huang, Y.; Lai, Z. C.; Zhang, X.; Zheng, L. R. et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1705509.

    Google Scholar 

  52. Zheng, Z. L.; Yu, L.; Gao, M.; Chen, X. Y.; Zhou, W.; Ma, C.; Wu, L. H.; Zhu, J. F.; Meng, X. Y.; Hu, J. T. et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 2020, 11, 3315.

    CAS  Google Scholar 

  53. Solomon, G.; Kohan, M. G.; Vagin, M.; Rigoni, F.; Mazzaro, R.; Natile, M. M.; You, S. J.; Morandi, V.; Concina, I.; Vomiero, A. Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy 2021, 81, 105664.

    CAS  Google Scholar 

  54. Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni−Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179–6187.

    CAS  Google Scholar 

  55. Jian, W. J.; Cheng, X. L.; Huang, Y. Y.; You, Y.; Zhou, R.; Sun, T. T.; Xu, J. Arrays of ZnO/MoS2 nanocables and MoS2 nanotubes with phase engineering for bifunctional photoelectrochemical and electrochemical water splitting. Chem. Eng. J. 2017, 328, 474–483.

    CAS  Google Scholar 

  56. Luo, M.; Liu, S. Q.; Zhu, W. W.; Ye, G. Y.; Wang, J.; He, Z. An electrodeposited MoS2−MoO3−x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution. Chem. Eng. J. 2022, 428, 131055.

    CAS  Google Scholar 

  57. Zhou, Y.; Hao, W.; Zhao, X. X.; Zhou, J. D.; Yu, H. M.; Lin, B.; Liu, Z.; Pennycook, S. J.; Li, S. Z.; Fan, H. J. Electronegativity-induced charge balancing to boost stability and activity of amorphous electrocatalysts. Adv. Mater., in press, https://doi.org/10.1002/adma.202100537.

  58. Wu, T.; Song, E. H.; Zhang, S. N.; Luo, M. J.; Zhao, C. D.; Zhao, W.; Liu, J. J.; Huang, F. Q. Engineering metallic heterostructure based on Ni3N and 2M−MoS2 for alkaline water electrolysis with industry-compatible current density and stability. Adv. Mater. 2022, 34, 2108505.

    CAS  Google Scholar 

  59. Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

    CAS  Google Scholar 

  60. Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

    Google Scholar 

  61. Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653.

    CAS  Google Scholar 

  62. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  63. Wei, H.; Si, J. C.; Zeng, L. B.; Lyu, S. L.; Zhang, Z. G.; Suo, Y. G.; Hou, Y. Electrochemically exfoliated Ni-doped MoS2 nanosheets for highly efficient hydrogen evolution and Zn-H2O battery. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.01.037.

  64. Zheng, M. Y.; Guo, K. L.; Jiang, W. J.; Tang, T.; Wang, X. Y.; Zhou, P. P.; Du, J.; Zhao, Y. Q.; Xu, C. L.; Hu, J. S. When MoS2 meets FeOOH: A “one-stone-two-birds” heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Appl. Catal. B:Environ. 2019, 244, 1004–1012.

    CAS  Google Scholar 

  65. Yin, J.; Jin, J.; Lin, H. H.; Yin, Z. Y.; Li, J. Y.; Lu, M.; Guo, L. C.; Xi, P. X.; Tang, Y.; Yan, C. H. Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 2020, 7, 1903070.

    CAS  Google Scholar 

  66. Sun, K. A.; Zeng, L. Y.; Liu, S. H.; Zhao, L.; Zhu, H. Y.; Zhao, J. C.; Liu, Z.; Cao, D. W.; Hou, Y. C.; Liu, Y. Q. et al. Design of basal plane active MoS2 through one-step nitrogen and phosphorus co-doping as an efficient pH-universal electrocatalyst for hydrogen evolution. Nano Energy 2019, 58, 862–869.

    CAS  Google Scholar 

  67. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    CAS  Google Scholar 

  68. Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638.

    CAS  Google Scholar 

  69. Ma, Q.; Qiao, H.; Huang, Z. Y.; Liu, F.; Duan, C. G.; Zhou, Y.; Liao, G. C.; Qi, X. Photo-assisted electrocatalysis of black phosphorus quantum dots/molybdenum disulfide heterostructure for oxygen evolution reaction. Appl. Surf. Sci. 2021, 562, 150213.

    CAS  Google Scholar 

  70. Zhang, G.; Liu, H. J.; Qu, J. H.; Li, J. H. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209.

    CAS  Google Scholar 

  71. Wang, Y. F.; Yu, Y.; Wang, J. L.; Peng, L. H.; Zuo, Y. X.; Zuo, C. C. Novel multifunctional Janus-type membrane on Al anode for corrosion protection. Adv. Mater. Interfaces 2021, 8, 2100786.

    CAS  Google Scholar 

  72. Lu, A. Y.; Zhu, H. Y.; Xiao, J.; Chuu, C. P.; Han, Y. M.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. M. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749.

    CAS  Google Scholar 

  73. Zhou, L.; Zhang, H. W.; Bao, H. M.; Wei, Y.; Fu, H.; Cai, W. P. Monodispersed snowman-like Ag-MoS2 Janus nanoparticles as chemically self-propelled nanomotors. ACS Appl. Nano Mater. 2020, 3, 624–632.

    CAS  Google Scholar 

  74. Zhou, L.; Zhang, H. W.; Bao, H. M.; Liu, G. Q.; Li, Y.; Cai, W. P. Decoration of Au nanoparticles on MoS2 nanospheres: From Janus to core/shell structure. J. Phys. Chem. C 2018, 122, 8628–8636.

    CAS  Google Scholar 

  75. Zhang, K. Y.; Guo, Y. F.; Larson, D. T.; Zhu, Z. Y.; Fang, S. A.; Kaxiras, E.; Kong, J.; Huang, S. X. Spectroscopic signatures of interlayer coupling in Janus MoSSe/MoS2 heterostructures. ACS Nano 2021, 15, 14394–14403.

    CAS  Google Scholar 

  76. Wang, J. Y.; Cui, Y.; Wang, D. Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 2019, 31, 1801993.

    Google Scholar 

  77. Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X.; Lou, X. W. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 2014, 7, 3302–3306.

    CAS  Google Scholar 

  78. Tang, B. S.; Yu, Z. G.; Zhang, Y. X.; Tang, C. H.; Seng, H. L.; Seh, Z. W.; Zhang, Y. W.; Pennycook, S. J.; Gong, H.; Yang, W. F. Metal-organic framework-derived hierarchical MoS2/CoS2 nanotube arrays as pH-universal electrocatalysts for efficient hydrogen evolution. J. Mater. Chem. A 2019, 7, 13339–13346.

    CAS  Google Scholar 

  79. Li, H. H.; Yu, S. H. Recent advances on controlled synthesis and engineering of hollow alloyed nanotubes for electrocatalysis. Adv. Mater. 2019, 31, 1803503.

    Google Scholar 

  80. Wang, C.; Zhang, L.; Xu, G. C.; Yang, L. F.; Yang, J. H. Construction of unique ternary composite MCNTs@CoSx@MoS2 with three-dimensional lamellar heterostructure as high-performance bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. Chem. Eng. J. 2021, 417, 129270.

    CAS  Google Scholar 

  81. Li, Y. J.; Wang, W. Y.; Huang, B. J.; Mao, Z. F.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Abundant heterointerfaces in MOF-derived hollow CoS2−MoS2 nanosheet array electrocatalysts for overall water splitting. J. Energy Chem. 2021, 57, 99–108.

    CAS  Google Scholar 

  82. Kim, M.; Seok, H.; Selvam, N. C. S.; Cho, J.; Choi, G. H.; Nam, M. G.; Kang, S.; Kim, T.; Yoo, P. J. Kirkendall effect induced bifunctional hybrid electrocatalyst (Co9S8@MoS2/N-doped hollow carbon) for high performance overall water splitting. J. Power Sources 2021, 493, 229688.

    CAS  Google Scholar 

  83. Guo, Y. N.; Tang, J.; Wang, Z. L.; Kang, Y. M.; Bando, Y.; Yamauchi, Y. Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494–502.

    CAS  Google Scholar 

  84. Li, Y.; Majewski, M. B.; Islam, S. M.; Hao, S. Q.; Murthy, A. A.; DiStefano, J. G.; Hanson, E. D.; Xu, Y. B.; Wolverton, C.; Kanatzidis, M. G. et al. Morphological engineering of winged Au@MoS2 heterostructures for electrocatalytic hydrogen evolution. Nano Lett. 2018, 18, 7104–7110.

    CAS  Google Scholar 

  85. Zhu, H.; Gao, G. H.; Du, M. L.; Zhou, J. H.; Wang, K.; Wu, W. B.; Chen, X.; Li, Y.; Ma, P. M.; Dong, W. F. et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 2018, 30, 1707301.

    Google Scholar 

  86. Zhu, H.; Zhang, J. F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B. et al. When cubic cobalt sulfide meets layered molybdenum disulfide: A core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 2015, 27, 4752–4759.

    CAS  Google Scholar 

  87. Doan, T. L. L.; Nguyen, D. C.; Prabhakaran, S.; Kim, D. H.; Tran, D. T.; Kim, N. H.; Lee, J. H. Single-atom Co-decorated MoS2 nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting. Adv. Funct. Mater. 2021, 31, 2100233.

    CAS  Google Scholar 

  88. Zhang, Q.; Liu, B. Q.; Ji, Y.; Chen, L. H.; Zhang, L. Y.; Li, L.; Wang, C. G. Construction of hierarchical yolk-shell nanospheres organized by ultrafine Janus subunits for efficient overall water splitting. Nanoscale 2020, 12, 2578–2586.

    CAS  Google Scholar 

  89. Wu, A. P.; Tian, C. G.; Yan, H. J.; Jiao, Y. Q.; Yan, Q.; Yang, G. Y.; Fu, H. G. Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad pH range. Nanoscale 2016, 8, 11052–11059.

    CAS  Google Scholar 

  90. Bai, J. M.; Meng, T.; Guo, D. L.; Wang, S. G.; Mao, B. G.; Cao, M. H. Co9S8@MoS2 core-shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn-air batteries. ACS Appl. Mater. Interfaces 2018, 10, 1678–1689.

    CAS  Google Scholar 

  91. Xing, Z. C.; Yang, X. R.; Asiri, A. M.; Sun, X. P. Three-dimensional structures of MoS2@Ni core/shell nanosheets array toward synergetic electrocatalytic water splitting. ACS Appl. Mater. Interfaces 2016, 8, 14521–14526.

    CAS  Google Scholar 

  92. Yang, T.; Yin, L. S.; He, M. S.; Wei, W. X.; Cao, G. J.; Ding, X. R.; Wang, Y. H.; Zhao, Z. M.; Yu, T. T.; Zhao, H. et al. Yolk-shell hierarchical catalyst with tremella-like molybdenum sulfide on transition metal (Co, Ni and Fe) sulfide for electrochemical water splitting. Chem. Commun. 2019, 55, 14343–14346.

    CAS  Google Scholar 

  93. Liu, P. T.; Zhu, J. Y.; Zhang, J. Y.; Xi, P. X.; Tao, K.; Gao, D. Q.; Xue, D. S. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2017, 2, 745–752.

    CAS  Google Scholar 

  94. Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Zheng, X. S.; Cai, J. Y.; Ye, J.; Xie, Y. F.; Liu, Y.; Zhou, J. B.; Zhu, J. F. et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217.

    Google Scholar 

  95. Deng, S. J.; Luo, M.; Ai, C. Z.; Zhang, Y.; Liu, B.; Huang, L.; Jiang, Z.; Zhang, Q. H.; Gu, L.; Lin, S. W. et al. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16289–16296.

    CAS  Google Scholar 

  96. Xiong, J.; Li, J.; Shi, J. W.; Zhang, X. L.; Cai, W. W.; Yang, Z. H.; Cheng, H. S. Metallic 1T-MoS2 nanosheets in-situ entrenched on N, P, S-co doped hierarchical carbon microflower as an efficient and robust electro-catalyst for hydrogen evolution. Appl. Catal. B:Environ. 2019, 243, 614–620.

    CAS  Google Scholar 

  97. Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.

    Google Scholar 

  98. Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

    CAS  Google Scholar 

  99. Yang, S. Z.; Gong, Y. J.; Manchanda, P.; Zhang, Y. Y.; Ye, G. L.; Chen, S. M.; Song, L.; Pantelides, S. T.; Ajayan, P. M.; Chisholm, M. F. et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 2018, 30, 1803477.

    Google Scholar 

  100. Li, Y.; Gu, Q. F.; Johannessen, B.; Zheng, Z.; Li, C.; Luo, Y. T.; Zhang, Z. Y.; Zhang, Q.; Fan, H. N.; Luo, W. B. et al. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution. Nano Energy 2021, 84, 105898.

    CAS  Google Scholar 

  101. Sun, T.; Wang, J.; Chi, X.; Lin, Y. X.; Chen, Z. X.; Ling, X.; Qiu, C. T.; Xu, Y. S.; Song, L.; Chen, W. et al. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 2018, 8, 7585–7592.

    CAS  Google Scholar 

  102. Wei, C.; Wu, W. Z.; Li, H.; Lin, X. C.; Wu, T.; Zhang, Y. D.; Xu, Q.; Zhang, L. P.; Zhu, Y. H.; Yang, X. N. et al. Atomic plane-vacancy engineering of transition-metal dichalcogenides with enhanced hydrogen evolution capability. ACS Appl. Mater. Interfaces 2019, 11, 25264–25270.

    CAS  Google Scholar 

  103. Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.

    CAS  Google Scholar 

  104. Wu, W. Z.; Niu, C. Y.; Wei, C.; Jia, Y.; Li, C.; Xu, Q. Activation of MoS2 basal planes for hydrogen evolution by zinc. Angew. Chem., Int. Ed. 2019, 58, 2029–2033.

    CAS  Google Scholar 

  105. Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.

    CAS  Google Scholar 

  106. Luo, Z. Y.; Zhang, H.; Yang, Y. Q.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 2020, 11, 1116.

    CAS  Google Scholar 

  107. Cheng, Y. F.; Lu, S. K.; Liao, F.; Liu, L. B.; Li, Y. Q.; Shao, M. W. Rh-MoS2 nanocomposite catalysts with Pt-like activity for hydrogen evolution reaction. Adv. Funct. Mater. 2017, 27, 1700359.

    Google Scholar 

  108. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    CAS  Google Scholar 

  109. Yang, J.; Wang, Y.; Lagos, M. J.; Manichev, V.; Fullon, R.; Song, X. J.; Voiry, D.; Chakraborty, S.; Zhang, W. J.; Batson, P. E. et al. Single atomic vacancy catalysis. ACS Nano 2019, 13, 9958–9964.

    CAS  Google Scholar 

  110. Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

    CAS  Google Scholar 

  111. Cheng, Z. H.; Xiao, Y. K.; Wu, W. P.; Zhang, X. Q.; Fu, Q.; Zhao, Y.; Qu, L. T. All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction. ACS Nano 2021, 15, 11417–11427.

    CAS  Google Scholar 

  112. Wu, Y.; Li, F.; Chen, W. L.; Xiang, Q.; Ma, Y. L.; Zhu, H.; Tao, P.; Song, C. Y.; Shang, W.; Deng, T. et al. Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting. Adv. Mater. 2018, 30, 1803151.

    Google Scholar 

  113. Muthurasu, A.; Maruthapandian, V.; Kim, H. Y. Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl. Catal. B:Environ. 2019, 248, 202–210.

    CAS  Google Scholar 

  114. Ji, X. X.; Lin, Y. H.; Zeng, J.; Ren, Z. H.; Lin, Z. J.; Mu, Y. B.; Qiu, Y. J.; Yu, J. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat. Commun. 2021, 12, 1380.

    CAS  Google Scholar 

  115. Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. 2H-MoS2 on Mo2CTxMXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano 2020, 14, 16140–16155.

    CAS  Google Scholar 

  116. Kim, M.; Anjum, M. A. R.; Lee, M.; Lee, B. J.; Lee, J. S. Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media. Adv. Funct. Mater. 2019, 29, 1809151.

    Google Scholar 

  117. Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

    CAS  Google Scholar 

  118. Zhai, Z. J.; Li, C.; Zhang, L.; Wu, H. C.; Zhang, L.; Tang, N.; Wang, W.; Gong, J. L. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J. Mater. Chem. A 2018, 6, 9833–9838.

    CAS  Google Scholar 

  119. Chang, P.; Zhang, S.; Xu, X. M.; Lin, Y. F.; Chen, X. Y.; Guan, L. X.; Tao, J. G. Facile synthesis of MoS2/Ni2V3O8 nanosheets for pH-universal efficient hydrogen evolution catalysis. Chem. Eng. J. 2021, 423, 130196.

    CAS  Google Scholar 

  120. Mao, H.; Guo, X.; Fan, Q. Z.; Fu, Y. L.; Yang, H. R.; Liu, D. L.; Wu, S. Y.; Wu, Q.; Song, X. M. Improved hydrogen evolution activity by unique NiS2−MoS2 heterostructures with misfit lattices supported on poly(ionic liquid)s functionalized polypyrrole/graphene oxide nanosheets. Chem. Eng. J. 2021, 404, 126253.

    CAS  Google Scholar 

  121. Qin, C. L.; Fan, A. X.; Zhang, X.; Wang, S. Q.; Yuan, X. L.; Dai, X. P. Interface engineering: Few-layer MoS2 coupled to a NiCo-sulfide nanosheet heterostructure as a bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2019, 7, 27594–27602.

    CAS  Google Scholar 

  122. Lei, L.; Huang, D. L.; Lai, C.; Zhang, C.; Deng, R.; Chen, Y. S.; Chen, S.; Wang, W. J. Interface modulation of Mo2C@foam nickel via MoS2 quantum dots for the electrochemical oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 15074–15085.

    CAS  Google Scholar 

  123. Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li, Y. F.; Lan, Y. Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116.

    Google Scholar 

  124. Ibupoto, Z. H.; Tahira, A.; Tang, P. Y.; Liu, X. J.; Morante, J. R.; Fahlman, M.; Arbiol, J.; Vagin, M.; Vomiero, A. MoSx@NiO composite nanostructures: An advanced nonprecious catalyst for hydrogen evolution reaction in alkaline media. Adv. Funct. Mater. 2019, 29, 1807562.

    Google Scholar 

  125. Zhang, X.; Liang, Y. Y. Nickel hydr(oxy)oxide nanoparticles on metallic MoS2 nanosheets: A synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci. 2018, 5, 1700644.

    Google Scholar 

  126. Ji, D. X.; Peng, S. J.; Fan, L.; Li, L. L.; Qin, X. H.; Ramakrishna, S. Thin MoS2 nanosheets grafted MOFs-derived porous Co−N−C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 2017, 5, 23898–23908.

    CAS  Google Scholar 

  127. Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Design aktiver atomarer zentren für HER-elektrokatalysatoren. Angew. Chem., Int. Ed. 2020, 132, 20978–20998.

    Google Scholar 

  128. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  129. Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

    CAS  Google Scholar 

  130. Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

    CAS  Google Scholar 

  131. Wang, J.; Fang, W. H.; Hu, Y.; Zhang, Y. H.; Dang, J. Q.; Wu, Y.; Chen, B. Z.; Zhao, H.; Li, Z. X. Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B:Environ. 2021, 298, 120490.

    CAS  Google Scholar 

  132. Ji, L.; Yan, P. F.; Zhu, C. H.; Ma, C. Y.; Wu, W. Z.; Wei, C.; Shen, Y. L.; Chu, S. Q.; Wang, J. O.; Du, Y. et al. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 251, 87–93.

    CAS  Google Scholar 

  133. Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 132, 10588–10593.

    Google Scholar 

  134. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Google Scholar 

  135. Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Sun, L. C.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.

    CAS  Google Scholar 

  136. Xiong, Q. Z.; Wang, Y.; Liu, P. F.; Zheng, L. R.; Wang, G. Z.; Yang, H. G.; Wong, P. K.; Zhang, H. M.; Zhao, H. J. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 2018, 30, 1801450.

    Google Scholar 

  137. Yang, Y. Q.; Zhang, K.; Ling, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2−Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

    CAS  Google Scholar 

  138. Kwon, I. S.; Debela, T. T.; Kwak, I. H.; Park, Y. C.; Seo, J.; Shim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. Ruthenium nanoparticles on cobalt-doped 1T′ phase MoS2 nanosheets for overall water splitting. Small 2020, 16, 2000081.

    CAS  Google Scholar 

  139. Kuang, P. Y.; He, M.; Zou, H. Y.; Yu, J. G.; Fan, K. 0D/3D MoS2−NiS2/N-doped graphene foam composite for efficient overall water splitting. Appl. Catal. B:Environ. 2019, 254, 15–25.

    CAS  Google Scholar 

  140. Yoon, T.; Kim, K. S. One-step synthesis of CoS-doped β-Co(OH)2@amorphous MoS2+x hybrid catalyst grown on nickel foam for high-performance electrochemical overall water splitting. Adv. Funct. Mater. 2016, 26, 7386–7393.

    CAS  Google Scholar 

  141. Lu, Y. K.; Guo, X. X.; Yang, L. Y.; Yang, W. F.; Sun, W. T.; Tuo, Y. X.; Zhou, Y.; Wang, S. T.; Pan, Y.; Yan, W. F. et al. Highly efficient CoMoS heterostructure derived from vertically anchored Co5Mo10 polyoxometalate for electrocatalytic overall water splitting. Chem. Eng. J. 2020, 394, 124849.

    CAS  Google Scholar 

  142. Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B:Environ. 2019, 247, 107–114.

    CAS  Google Scholar 

  143. Wei, S. T.; Cui, X. Q.; Xu, Y. C.; Shang, B.; Zhang, Q. H.; Gu, L.; Fan, X. F.; Zheng, L. R.; Hou, C. M.; Huang, H. H. et al. Iridium-triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media. ACS Energy Lett. 2019, 4, 368–374.

    CAS  Google Scholar 

  144. Wang, C. Z.; Shao, X. D.; Pan, J.; Hu, J. G.; Xu, X. Y. Redox bifunctional activities with optical gain of Ni3S2 nanosheets edged with MoS2 for overall water splitting. Appl. Catal. B:Environ. 2020, 268, 118435.

    CAS  Google Scholar 

  145. Hou, J. G.; Zhang, B.; Li, Z. W.; Cao, S. Y.; Sun, Y. Q.; Wu, Y. Z.; Gao, Z. M.; Sun, L. C. Vertically aligned oxygenated-CoS2−MoS2 heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting. ACS Catal. 2018, 8, 4612–4621.

    CAS  Google Scholar 

Download references

Acknowledgements

S. Y. designed and supervised the project. All the authors discussed and commented on the manuscript. This work was financially supported by the National Natural Science Foundation of China (No. 21902157), Starting fund for scientific research of high-level talents, Anhui Agricultural University (No. rc382108), the Open Fund of The State Key Laboratory of Catalysis in DICP, CAS (N-21-12), and the Open Fund of The State Key Laboratory of Molecular Reaction Dynamics in DICP, CAS (SKLMRD-K202223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, C., Han, A. et al. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 15, 6862–6887 (2022). https://doi.org/10.1007/s12274-022-4297-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4297-3

Keywords

Navigation