Skip to main content

State-of-the-Art Advances and Perspectives for Electrocatalysis

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

Electrocatalysis stands as a heart for realization of hydrogen gas (H2) as a source of energy to replace conventional and traditional fossil fuel based energy. In this chapter, we present a comprehensive overview of the state-of-the-art molybdenum disulphide (MoS2) nanostructures for application in electrolytic hydrogen evolution reaction (HER). MoS2 is a crystalline compound consisting of Mo sandwiched between two sulfur atoms and can be identified in four poly-type structures, namely 1T, 1H, 2H and 3R. Firstly, the reaction accompanied with water splitting electrolysis, HER mechanisms as well as parameters to monitor HER reactions are discussed. Furthermore, the chapter describes different types of MoS2 poly-types, chemical synthetic routes and key approaches to activate inert S-containing basal plane of MoS2. This led to superior performance of new materials by combining the advantages of MoS2 components and others. Finally, future integration approaches which can be used to attain MoS2 with exposed edges and excellent electron transport channel are also outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdolmaleki A, Mohamadi Z, Ensafi AA, Atashbar NZ, Rezaei B (2018) Efficient and stable HER electrocatalyst using Pt nanoparticles@ poly(3,4eethylene dioxythiophene) modified sulfonated graphene nanocomposite. Int J Hydrogen Energy 43:8323–8332

    Article  CAS  Google Scholar 

  2. Akbari E, Jahanbin K, Afroozeh A, Yupapin P, Buntat Z (2018) Brief review of monolayer molybdenum disulfide application in gas sensor. Phys B 545:510–518

    Article  CAS  Google Scholar 

  3. Appel AM, Helm ML (2014) Determining the overpotential for a molecular electrocatalyst. ACS Catal 4:630–633

    Article  CAS  Google Scholar 

  4. Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2:1916–1923

    Article  CAS  Google Scholar 

  5. Benson J, Li M, Wang S, Wang P, Papakonstantinou P (2015) Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl Mater Interfaces 7:14113–14122

    Article  CAS  Google Scholar 

  6. Boiadjieva-Scherzer T, Kronberger H, Fafilek G, Monev M (2016) Hydrogen evolution reaction on electrodeposited Zn-Cr alloy coatings. J Electroanal Chem 783:68–75

    Article  CAS  Google Scholar 

  7. Cai Y, Yang X, Liang T, Dai L, Ma L, Huang G, Chen W, Chen H, Su H, Xu M (2014) Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high performance hydrogen evolution. Nanotechnology 25:465401 (1–6)

    Google Scholar 

  8. Cai Z, Liu B, Zou X, Cheng HM (2017) Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev (2017) https://doi.org/10.1021/acs.chemrev.7b00536

  9. Cao J, Zhou J, Zhang Y, Zou Y, Liu X (2017) MoS2 nanosheets direct support on reduced graphene oxide: an advanced electrocatalyst for hydrogen evolution reaction. PLoS ONE 12:e0177258

    Article  CAS  Google Scholar 

  10. Cao J, Zhou J, Zhang Y, Liu X (2017) A clean and facile synthesis of MoS2 nanosheets grown on multi-wall CNTs for enhanced hydrogen evolution reaction performance. Sci Rep 7 (2017b) https://doi.org/10.1038/s41598-017-09047-x

  11. Chao J, Deng J, Zhou W, Liu J, Hu R, Yang L, Zhu M, Schmidt OG (2017) Hierarchical nanoflowers assembled from MoS2/polyaniline sandwiched nanosheets for high performance supercapacitor. Electrochim Acta 243:98–104

    Article  CAS  Google Scholar 

  12. Chaudhary N, Khanuja M, Islam ASS (2018) Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sens Actuators A 277:190–198

    Article  CAS  Google Scholar 

  13. Chedid G, Yassin A (2018) Recent trends in covalent and metal organic frameworks for biomedical applications. Nanomaterials 8. https://doi.org/10.3390/nano8110916

  14. Cheng Y, Jiang SP (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci Mater Int 25:545–553

    Article  CAS  Google Scholar 

  15. Cheng CC, Lu AY, Tseng CC, Yang X, Hedhili MN, Cheng MC, Wei KH, Li LJ (2016) Activating basal-plane catalytic activity of two dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy 30:846–852

    Article  CAS  Google Scholar 

  16. Choi JM, Kim SH, Lee SJ, Kim SS (2018) Effects of pressure and temperature in hydrothermal preparation of mos2 catalyst for methanation reaction. Catal Lett 148:1803–1814

    Article  CAS  Google Scholar 

  17. Conte M, Di Mario F, Iacobazzi A, Mattucci A, Moreno A, Ronchetti M (2009) Hydrogen as future energy carrier: the ENEA point of view on technology and application prospects. Energies 2:150–179

    Article  CAS  Google Scholar 

  18. Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y (2015) Co-doped MoS2 nanosheets with dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces 7:27242–27253

    Article  CAS  Google Scholar 

  19. Dai X, Du K, Li Z, Sun H, Yang Y, Zhang X, Li X, Wang H (2015) Highly efficient hydrogen evolution catalyst by MoS2-MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids. Chem Eng Sci 134:572–580

    Article  CAS  Google Scholar 

  20. Dai X, Du K, Li Z, Sun H, Yang Y, Zhang W, Zhang X (2015) Enhanced hydrogen evolution reaction of few-layer MoS2 nanosheets-coated functionalized carbon nanotubes. Int J Hydrogen Energy 40:8877–8888

    Article  CAS  Google Scholar 

  21. Dai X, Li Z, Du K, Sun H, Yang Y, Zhang X, Ma X, Wang J (2015) Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction. Electrochim Acta 171:72–80

    Article  CAS  Google Scholar 

  22. Dalla Corte DA, Torres C, Correa PS, Rieder ES, Malfatti CF (2012) The hydrogen evolution reaction on nickel-polyaniline composite electrodes. Int J Hydrogen Energy 37:3025–3032

    Article  CAS  Google Scholar 

  23. Das S, Ghosh R, Routh P, Shit A, Mondal S, Panja A, Nandi AK (2018) Conductive MoS2 quatum dot/polyaniline aerogel for enhanced electrocatalytic hydrogen evolution and photoresponse properties. ACS Appl Nano Mater 1:2306–2316

    Article  CAS  Google Scholar 

  24. Delgado D, Minakshi M, Kim DJ (2015) Electrochemical impedance spectroscopy studies on hydrogen evolution from porous Raney cobalt in alkaline solution. Int J Electrochem Sci 10:9379–9394

    CAS  Google Scholar 

  25. Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH (2019) Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev 380:330–352

    Article  CAS  Google Scholar 

  26. Domask AC, Gurunathan RL, Mohney SE (2015) Transition metal–MoS2 reactions: review and thermodynamic predictions. J Electron Mater 44:4065–4079. https://doi.org/10.1007/s11664-015-3956-5

  27. Eftekhari A (2017) Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy 42:11053–11077

    Article  CAS  Google Scholar 

  28. Gao MR, Chan MKY, Sun Y (2015) Edge-terminated molybdenum disulphide with a 9.4-Ã… interlayer spacing for electrochemical hydrogen production. Nat Commun 6:7493. https://doi.org/10.1038/ncomms8493

  29. Guo X, Hou Y, Ren R, Chen J (2017) Temperature-dependent crystallization of MoS2 nanoflakes on graphene nanosheets for electrocatalysis. Nanoscale Res Lett 12:479–488

    Article  CAS  Google Scholar 

  30. Guo Y, Tang J, Qian H, Wang Z, Yamauchi Y (2017) One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts. Chem Mater 29:5566–5573

    Article  CAS  Google Scholar 

  31. Guo Y, Fu X, Peng Z (2017a) Growth and mechanism of MoS2 nanoflowers with ultrathin nanosheets. J Nanomater. https://doi.org/10.1155/2017/6865282

  32. Gupta U, Rao CNR (2017) Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 41:49–65

    Article  CAS  Google Scholar 

  33. Hakala M, Kronsberg R, Laasonen K (2017) Hydrogen adsorption on doped MoS2 nanostructures. Sci Rep 7. https://doi.org/10.1038/s41598-017-15622-z

  34. Han X, Tong X, Liu X, Chen A, Wen X, Yang N, Guo XY (2018) Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal 8:1828–1836

    Article  CAS  Google Scholar 

  35. He Z, Que W (2016) Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction. Appl Mater Today 3:23–56

    Article  Google Scholar 

  36. Hellstern TR, Kibsgaard J, Tsai C, Palm DW, King LA, Abild-Pedersen F, Jaramillo TF (2017) Investigating catalyst–support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2– nanoclusters. ACS Catal 7:7126–7130

    Article  CAS  Google Scholar 

  37. Hod I, Deria P, Bury W, Mondloch JE, Kung CW, So M, Sampson MD, Peters AW, Kubiak CP, Farha OK, Hupp JT (2015) A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nat Commun 6:8304. https://doi.org/10.1038/ncomms9304

  38. Hong S, Sheng C, Krishnamoorthy A, Rajak P, Tiwari S, Nomura K, Misawa M, Shimojo F, Kalia RK, Nakano A, Vashishta P (2018) Chemical vapor deposition synthesis of MoS2 layers from the direct sulfidation of MoO3 surfaces using reactive molecular dynamics simulations. J Phys Chem C 122:7494–7503

    Article  CAS  Google Scholar 

  39. Hyun CM, Choi JH, Lee SW, Park JH, Lee KT, Ahn JH (2018) Synthesis mechanism of MoS2 layered crystals by chemical vapour deposition using MoO3 and sulfur powders. J Alloy Compd 765:380–384

    Article  CAS  Google Scholar 

  40. Jamesh MI, Sun X (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting—a review. J Power Sources 400:31–68

    Article  CAS  Google Scholar 

  41. Karikalan N, Sundaresan P, Chen SM, Karthik R, Karuppiah C (2019) Cobalt molybdenum sulfide decorated with highly conductive sulfur-doped carbon as an electrocatalyst for the enhanced activity of hydrogen evolution reaction. Int J Hydrogen Energy 44:9164–9173

    Article  CAS  Google Scholar 

  42. Kaur R, Kaur A, Umar A, Anderson WA, Kansal SK (2019) Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. Mater Res Bull 109:124–133

    Article  CAS  Google Scholar 

  43. Kayan DB, Koçak D (2017) Enhanced catalytic activity of ppy-coated pencil electrode in the presence of chitosan and Au nanoparticles for hydrogen evolution reaction. J Solid State Electrochem. 21:2791–2798. https://doi.org/10.1007/s10008-017-3605-4

  44. Khan M, Yousaf AB, Chen M, Wei C, Wu X, Huang N, Qi Z, Li L (2016) Molybdenum sulphide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res 9:837–848

    Article  CAS  Google Scholar 

  45. Kong Q, Wang X, Tang A, Duan W, Liu B (2016) Three-dimensional hierarchical MoS2 nanosheet arrays/carbon cloth as flexible electrodes for high-performance hydrogen evolution reaction. Mater Lett 177:139–142

    Article  CAS  Google Scholar 

  46. Krishnan U, Kaur M, Singh K, Kumar M, Kumar A (2019) A synoptic review of MoS2: synthesis to applications. Superlattices Microstruct 128:274–297

    Article  CAS  Google Scholar 

  47. Lei J, Jiang Z, Lu X, Nie G, Wang C (2015) Synthesis of few-layer MoS2 nanosheets-wrapped polyaniline hierarchical nanostructures for enhanced electrochemical capacitance performance. Electrochim Acta 176:149–155

    Article  CAS  Google Scholar 

  48. Li Y, He B, Liu X, Hu X, Huang J, Ye S, Shu Z, Wang Y, Li Z (2019) Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution. Int J Hydrogen Energy 44:8070–8078

    Article  CAS  Google Scholar 

  49. Li H, Qian X, Xu C, Huang S, Zhu C, Jiang X, Shao L, Hou L (2017) Hierarchical porous Co9S8/nitrogen-doped carbon@MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 9:28394–28405

    Article  CAS  Google Scholar 

  50. Li H, Tsai C, Koh AL, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Nørskov JK, Zheng X (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through formation of strained sulphur vacancies. Nat Mater 15:48–53

    Article  CAS  Google Scholar 

  51. Li Y, Wang H, Wang R, He B, Gong Y (2018) 3D self-supported Fe-O-P film on nickel foam as a highly active bifunctional electrocatalyst for urea-assisted overall water splitting. Mater Res Bull 100:72–75

    Article  CAS  Google Scholar 

  52. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  53. Li R, Yang L, Xiong T, Wu Y, Cao L, Yuan D, Zhou W (2017) Nitrogen doped MoS2 nanosheets via low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J Power Sources 356:133–139

    Article  CAS  Google Scholar 

  54. Li F, Zhang L, Li J, Lin X, Li X, Fang Y, Huang J, Li W, Tian M, Jin J, Li R (2015) Synthesis of Cu-MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22

    Article  CAS  Google Scholar 

  55. Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Materiomics 1:33–44

    Article  Google Scholar 

  56. Li H, Yu K, Li C, Tang Z, Guo B, Lei X, Fu H, Zhu Z (2015a) Charge-transfer induced high efficient hydrogen evolution of MoS2/graphene cocatalyst. Sci Rep 5:18730. https://doi.org/10.1038/srep18730

  57. Lian M, Wu X, Wang Q, Zhang W, Wang Y (2017) Hydrothermal synthesis of polypyrrole/MoS2 intercalation composite for supercapacitor electrodes. Ceram Int 43:9877–9883

    Article  CAS  Google Scholar 

  58. Liu Y, Ghimire P, Jaroniec M (2019) Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. J Colloid Interface Sci 535:122–132

    Article  CAS  Google Scholar 

  59. Liu YR, Hu WH, Li X, Dong B, Shang X, Han GQ, Chai YM, Liu YQ, Liu CG (2016) Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 384:51–57

    Article  CAS  Google Scholar 

  60. Liu YR, Shang X, Gao WK, Dong B, Chi JQ, Li X, Yan KL, Chai YM, Liu YQ, Liu CG (2017) Ternary CoS2/MoS2/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution. Appl Surf Sci 412:138–145

    Article  CAS  Google Scholar 

  61. Liu N, Yang L, Wang S, Zhong Z, He S, Yang X, Gao Q, Tang Y (2015) Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution. J Power Sources 275:588–594

    Article  CAS  Google Scholar 

  62. Liu H, Zhang F, Li W, Zhang X, Lee CS, Wang W, Tang Y (2015) Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes. Electrochim Acta 167:132–138

    Article  CAS  Google Scholar 

  63. Liu Q, Wu Z, Ma Z, Dou S, Wu J, Tao L, Wang X, Ouyang C, Shen A, Wang S (2015b) One-pot synthesis of nitrogen and sulphur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries. Electrochim Acta 177:298–303

    Google Scholar 

  64. Liu Y, Yu H, Quan X, Chen S, Zhao H, Zhang Y (2014) Efficient and durable hydrogen evolution electrocatalyst based on non-metallic nitrogen doped hexagonal carbon. Sci Rep 4:6843. https://doi.org/10.1038/srep06843

  65. Lu X, Liu Y, Dong H, Dai W, Chen X, Qu X, Zhang X (2017) One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Sci Rep 7:42309. https://doi.org/10.1038/srep42309

  66. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    Article  CAS  Google Scholar 

  67. Luo L, Shi M, Zhao Z, Tan W, Lin X, Wang H, Jiang F (2019) Hydrothermal synthesis of MoS2 with controllable morphologies and its adsorption properties for bisphenol A. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2019.01.005

  68. Luo Z, Ouyang Y, Zhang H, Xiao M, Ge J, Jiang Z, Wang J, Tang D, Cao X, Liu C, Xing W (2018) Chemically activation MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat Commun 9:2120. https://doi.org/10.1038/s41467-018-04501-4

  69. Lyon YA, Roberts AA, McMillin DR (2015) Exploring hydrogen evolution and the overpotential. J Chem Educ 92:2130–2133

    Article  CAS  Google Scholar 

  70. Ma B, Chen TT, Li QY, Qin HY, Dong XY, Zang SQ (2019) Bimetallic-organic-framework derived nanohybrid Cu0.9Co2.1.S4@MoS2 for highly performance visible-light-catalytic hydrogen evolution. Materials 2:1134–1148

    CAS  Google Scholar 

  71. Ma CB, Qi X, Chen B, Bao S, Yin Z, Wu XJ, Luo Z, Wei J, Zhang HL, Zhang J (2014) MoS2 nanoflower-decorated reduced graphene paper for high performance hydrogen evolution reaction. Nanoscale 6:5624–5629

    Article  CAS  Google Scholar 

  72. Ma L, Ye J, Chen W, Chen D, Lee JM (2014) Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 10:144–152

    Article  CAS  Google Scholar 

  73. Mahale NK, Ingle S (2017) Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode. Energy 119:872–878

    Article  CAS  Google Scholar 

  74. Mashao G, Ramohlola KE, Mdluli SB, Monama GR, Hato MJ, Makgopa K, Molapo KM, Ramoroka ME, Iwuoha EI, Modibane KD (2019) Zinc-based zeolitic benzimidazolate framework/polyaniline nanocomposite for electrochemical sensing of hydrogen gas. Mater Chem Phys 230:287–298

    Article  CAS  Google Scholar 

  75. Mdleleni MM, Hyeon T, Suslick KS (1998) Sonochemical synthesis of nanostructured molybdenum sulphide. J Am Chem Soc 120:6189–6190

    Article  CAS  Google Scholar 

  76. Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A (2018) Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165:B3137–B3156

    Article  CAS  Google Scholar 

  77. Monama GR, Mdluli SB, Mashao G, Makhafola MD, Ramohlola KE, Molapo KM, Hato MJ, Makgopa K, Iwuoha EI, Modibane KD (2018) Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction. Renew Energy 119:62–72

    Article  CAS  Google Scholar 

  78. Monama GR, Modibane KD, Ramohlola KE, Molapo KM, Hato MJ, Makhafola MD, Mashao G, Mdluli SB, Iwuoha EI (2019) Copper(II) phthalocyanine/metal organic framework electrocatalyst for hydrogen evolution reaction application. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.02.052

  79. Murthy AP, Theerthagiri J, Madhavan J (2018) Insights on Tafel constant in the analysis of hydrogen evolution reaction. J Phys Chem C 122:23943–23949

    Article  CAS  Google Scholar 

  80. Noto V, Negro E, Vezzù K, Bertasi F, Nawn G (2015) Origins, developments, and perspectives of carbon nitride-based electrocatalysts for application in low-temperature FCs. Electrochem Soc Interface 24:59–62

    Google Scholar 

  81. Ouyang C, Feng S, Huo J, Wang S (2017) Three-dimensional hierarchical MoS2/CoS2 heterostructure arrays for highly efficient electrocatalytic hydrogen evolution. Green Energy Environ 2:134–141

    Article  Google Scholar 

  82. Ouyang Y, Ling C, Chen Q, Wang Z, Shi L, Wang J (2016) Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem Mater 28:4390–4396

    Article  CAS  Google Scholar 

  83. Presolski S, Pumera M (2016) Covalent functionalization of MoS2. Mater Today 19:140–145

    Article  CAS  Google Scholar 

  84. Pu Z, Wei S, Chen Z, Mu S (2016) 3D flexible hydrogen evolution electrodes with Se promoted molybdenum sulfide nanosheet arrays. RSC Adv 6:11077–11080

    Article  CAS  Google Scholar 

  85. Pukazhselvan D, Kumar V, Singh SK (2012) High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1:566–589

    Article  CAS  Google Scholar 

  86. Ramohlola KE, Masikini M, Mdluli SB, Monama GR, Hato MJ, Molapo KM, Iwuoha EI, Modibane KD (2017) Electrocatalytic hydrogen evolution reaction of metal organic frameworks decorated with poly (3-aminobenzoic acid). Electrochim Acta 246:1174–1182

    Article  CAS  Google Scholar 

  87. Ramohlola KE, Masikini M, Mdluli SB, Monama GR, Hato MJ, Molapo KM, Iwuoha EI, Modibane KD (2017) Electrocatalytic hydrogen production properties of poly(3-aminobenzoic acid) doped with metal organic frameworks. Int J Electrochem Sci 12:4392–4405

    Article  CAS  Google Scholar 

  88. Ramohlola KE, Monana GR, Hato MJ, Modibane KD, Molapo KM, Masikini M, Mduli SB, Iwuoha EI (2018) Polyaniline-metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction. Compos B 137:129–139

    Article  CAS  Google Scholar 

  89. Ruiz KH, Liu J, Tu R, Li M, Zhang S, Garcia JRV, Mu S, Li H, Goto T, Zhang L (2018) Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. J Alloy Compd 747:100–108

    Article  CAS  Google Scholar 

  90. Sapountzi FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35

    Article  Google Scholar 

  91. Sarker S, Chaturvedi P, Yan L, Nakotte T, Chen X, Richins SK, Das S, Peters J, Zhou M, Smirnov SN, Luo H (2018) Synergistic effect of iron diselenide decorated multi-walled carbon nanotubes for enhanced heterogeneous electron transfer and electrochemical hydrogen evolution. Electrochim Acta 270:138–146

    Article  CAS  Google Scholar 

  92. Shen X, Xia X, Ye W, Du Y, Wang C (2017) Hexagram-like CoS-MoS2 composites with enhanced activity for hydrogen evolution reaction. J Solid State Electrochem 21:409–417

    Article  CAS  Google Scholar 

  93. Shi Y, Zhou Y, Yang DR, Xu WX, Wang C, Wang FB, Xu JJ, Xia XH, Chen HY (2017) Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J Am Chem Soc 139:15479–15485

    Article  CAS  Google Scholar 

  94. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:13801. https://doi.org/10.1038/srep13801

  95. Singh AK, Kumar P, Late DJ, Kumar A, Patel S, Singh J (2018) 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl Mater Today 13:242–270

    Article  Google Scholar 

  96. Singh A, Moun M, Singh R (2019) Effect of different precursors on CVD growth of molybdenum disulfide. J Alloy Compd 782:772–779

    Article  CAS  Google Scholar 

  97. Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM (2016) Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29:29–36

    Article  CAS  Google Scholar 

  98. Su W, Wang P, Cai Z, Yang J, Wang X (2019) One-pot hydrothermal synthesis of Al-doped MoS2@graphene aerogel nanocomposite electrocatalysts for enhanced hydrogen evolution reaction. Results Phys 12:250–258

    Article  Google Scholar 

  99. Su C, Xiang J, Wen F, Song L, Mu C, Xu D, Hao C, Liu Z (2016) Microwave synthesized three-dimensional hierarchical nanostructure CoS2/MoS2 growth on carbon fiber cloth: a bifunctional electrode for hydrogen evolution and supercapacitor. Electrochim Acta 212:941–949

    Article  CAS  Google Scholar 

  100. Sultana UK, O’Mullane AP (2018) Electrochemical formation of amorphous molybdenum phosphosulfide for enabling the hydrogen evolution reaction in alkaline and acidic media. ACS Appl Energy Mater 1:2849–2858

    Article  CAS  Google Scholar 

  101. Sun W, Li X, Shi J, Sun H, Tao Z, Li F, Chen J (2017) Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res 10:2210–2222

    Article  CAS  Google Scholar 

  102. Sun T, Wang J, Chi X, Lin X, Chen Z, Ling X, Qiu L, Xu Y, Song L, Chen W, Su C (2018) Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal 8:7585–7592

    Article  CAS  Google Scholar 

  103. Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou JJ, Wang ZL (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157

    Article  CAS  Google Scholar 

  104. Tahira A, Ibupoto ZH, Mazzaro R, You S, Morandi V, Natile MM, Vagin M, Vomiero A (2019) Advanced electrocatalysts for hydrogen evolution reaction based on core−shell MoS2/TiO2 nanostructures in acidic and alkaline media. ACS Appl Energy Mater 2:2053–2062

    Article  CAS  Google Scholar 

  105. Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA (2014) Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343:66–69. https://doi.org/10.1126/science.1246738

    Article  CAS  Google Scholar 

  106. Tan C, Cao X, Wu XJ, He H, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331

    Article  CAS  Google Scholar 

  107. Tang Q, Jiang D (2015) Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem Mater 27:3743–3748

    Article  CAS  Google Scholar 

  108. Theerthagiri J, Sudha R, Premnath K, Arunachalam P, Madhavan J, Al-Mayouf AM (2017) Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 42:13020–13030

    Article  CAS  Google Scholar 

  109. Tian J, Wu W, Tang Z, Wu Y, Burns R, Tichnell B, Liu Z, Chen S (2018) Oxygen reduction reaction and hydrogen evolution reaction catalyzed by pd–ru nanoparticles encapsulated in porous carbon nanosheets. Catalysts 8:329. https://doi.org/10.3390/catal8080329

    Article  CAS  Google Scholar 

  110. Tong T, Li Q, Li W, Ma W, Su B, Bo L (2017) MoS2 thin sheet growing on nitrogen self-doped mesoporous graphic carbon derived from ZIF-8 with highly electrocatalytic performance on hydrogen evolution reaction. ACS Sustain Chem Eng 5:10240–10247

    Article  CAS  Google Scholar 

  111. Tong SS, Wang XJ, Li QC, Han XJ (2016) Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chin J Anal Chem 44:1447–1457

    Article  CAS  Google Scholar 

  112. Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals. I. J Electroanal Chem Interfacial Electrochem 81:97–111

    Article  CAS  Google Scholar 

  113. Tsai C, Abild-Pedersen F, Nørskov JK (2014) Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett 14:1381–1387

    Article  CAS  Google Scholar 

  114. Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015) Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf Sci 640:133–140

    Article  CAS  Google Scholar 

  115. Tsai C, Li H, Park S, Park J, Han HS, Nørskov JK, Zheng X, Abild-Pedersen F (2017) Electrochemical generation of sulphur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun 8 (2017) https://doi.org/10.1038/ncomm15113

  116. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227

    Article  CAS  Google Scholar 

  117. Wang Y, Chen B, Seo DH, Han ZJ, Wong JI, Ostrikov KK, Zhang H, Yang HY (2016) MoS2-coated vertical nanosheet for high performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Mater 8:e268. https://doi.org/10.1038/am.2016.44

    Article  CAS  Google Scholar 

  118. Wang Y, Lia X, Wang C (2017) Synthesis and characterization of MoS2 nanocomposites by a high pressure hydrothermal method. J Non-Oxide Glasses 9:47–54

    CAS  Google Scholar 

  119. Wang D, Pan Z, Wu Z, Wang Z, Liu Z (2014) Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. J Power Sources 264:229–234

    Article  CAS  Google Scholar 

  120. Wang G, Parrondo J, He C, Li Y, Ramani V (2017) Pt/C/Ni(OH)2 bi-functional electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions. J Electrochem Soc 164:F1307–F1315

    Article  CAS  Google Scholar 

  121. Wang C, Su Y, Zhao X, Tong S, Han X (2018) MoS2@HKUST-1 flower-like nanohybrids for efficient hydrogen evolution reactions. Chem A Eur J 24:1080–1087

    Article  CAS  Google Scholar 

  122. Wang D, Xie Y, Wu Z (2019) Amorphous phosphorus-doped MoS2 catalyst for efficient hydrogen evolution reaction. Nanotechnology 30:205401–205407

    Article  CAS  Google Scholar 

  123. Wang W, Zhang K, Qiao Z, Li L, Liu P, Yang Y (2014) Influence of surfactants on the synthesis of MoS2 catalysts and their activities in the hydrodeoxygenation of 4-methylphenol. Ind Eng Chem Res 53:10301–10309

    Article  CAS  Google Scholar 

  124. Wen L, Sun Y, Zhang T, Bai Y, Li X, Lyu X, Cai W, Li Y (2018) MnMoO4 nanosheet array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity over a wide pH range. Nanotechnology 29:335403. https://doi.org/10.1088/1361-6528/aac851

    Article  CAS  Google Scholar 

  125. Wen Y, Zhu H, Zhang L, Zhang S, Zhang M, Du M (2019) Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis. Mater Res Bull 112:46–52

    Article  CAS  Google Scholar 

  126. Wu L, Xu X, Zhao Y, Zhang K, Sun Y, Wang T, Wang Y, Zhong W, Du Y (2017) Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution. Appl Surf Sci 425:470–477

    Article  CAS  Google Scholar 

  127. Wu Z, Zou Z, Huang J, Gao F (2018) Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J Catal 358:243–252

    Article  CAS  Google Scholar 

  128. Wu W, Niu C, Wei C, Jia Y, Li C, Xu Q (2019) Activating of MoS2 basal planes for hydrogen evolution through zinc. Angew Chem. https://doi.org/10.1002/ange.201812475

  129. Wypych F, Schollhorn R (1992) 1T-MoS2, a new metallic modification of molybdenum disulfide. J Chem Soc Chem Commun 19:1386–1387

    Article  Google Scholar 

  130. Xiang ZC, Zhang Z, Xu XJ, Zhang Q, Yuan C (2016) MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon 98:84–89

    Article  CAS  Google Scholar 

  131. Xiong Q, Zhang X, Wang H, Liu G, Wang G, Zhang H, Zhao H (2018) One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem Commun 54:3859–3862

    Article  CAS  Google Scholar 

  132. Xu W, Wang H (2017) Earth-abundant amorphous catalysts for electrolysis of water. Chin J Catal 38:991–1005

    Article  CAS  Google Scholar 

  133. Yang F, Kang N, Yan J, Wang X, He J, Huo S, Song L (2018) Hydrogen evolution reaction property of molybdenum disulphide/nickel phosphide hybrids in alkaline solution. Metals 8:359–376

    Article  CAS  Google Scholar 

  134. Yang L, Liu P, Li J, Xiang B (2017) Two-dimensional material molybdenum disulfides as electrocatalysts for hydrogen evolution. Catalysts 7:285. https://doi.org/10.3390/catal7100285

    Article  CAS  Google Scholar 

  135. Yang Y, Yang H, Liang C, Zhu X (2018) Synthesis and characterization of Ni-Co electrocatalyst for hydrogen evolution reaction in acidic media. Int J Electrochem Sci 13:7193–7205

    Article  CAS  Google Scholar 

  136. Ye G, Gong Y, Lin J, Li B, He Y, Pantelides ST, Zhou W, Vajtai R, Ajayan PM (2016) Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett 16:1097–1103

    Article  CAS  Google Scholar 

  137. Yu X, Zhao J, Zheng LR, Tong Y, Zhang M, Xu G, Li C, Ma J, Shi G (2018) Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett 3:237–244

    Article  CAS  Google Scholar 

  138. Zang Y, Niu S, Wu Y, Zheng X, Cai J, Ye J, Xie Y, Liu Y, Zhou J, Zhu J, Liu X, Wang G, Qian Y (2019) Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat Commun 10:1217. https://doi.org/10.1038/s41467-019-09210-0

    Article  CAS  Google Scholar 

  139. Zeng X, Niu L, Song L, Wang X, Shi X, Yan J (2015) Effect of polymer addition on the structure and hydrogen evolution reaction property of nanoflower-like molybdenum disulfide. Metals 5:1829–1844

    Article  CAS  Google Scholar 

  140. Zhang L, Guo Y, Igbal A, Li B, Gong D, Liu W, Igbal K, Liu W, Qin W (2018) One step synthesis of the 3D flower-like heterostructures MoS2/CuS nanohybrid for electrocatalytic hydrogen energy. Int J Hydrogen Energy 43:1251–1260

    Article  CAS  Google Scholar 

  141. Zhang WL, Jiang D, Wang X, Hao BN, Liu YD, Liu J (2017) Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis. J Phys Chem C 121:4989–4998

    Article  CAS  Google Scholar 

  142. Zhang LF, Ke X, Ou G, Wei H, Wang LN, Wu H (2017) Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through ball-milling method. Sci China Mater 60:849–856

    Article  CAS  Google Scholar 

  143. Zhang N, Ma W, Wu T, Wang H, Han D, Niu L (2015) Edge-rich MoS2 nanosheets rooting into polyaniline nanofibers as effective catalyst for electrochemical hydrogen evolution. Electrochim Acta 180:155–163

    Article  CAS  Google Scholar 

  144. Zhang C, Wang Z, Bhoyate S, Morey T, Neria BL, Vasirajn V, Gupta G, Palchoudhury S, Kahol PK, Mishra SR, Perez F, Gupta RK (2017) MoS2 decorated carbon nanofibers as efficient and durable electrocatalyst for hydrogen evolution reaction. J Carbon Res 3:33–44

    Article  CAS  Google Scholar 

  145. Zhang L, Xiao J, Wang H, Shao M (2017) Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal 7:7855–7865

    Article  CAS  Google Scholar 

  146. Zhang P, Xu B, Chen G, Gao C, Gao M (2018) Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochim Acta 270:256–263

    Article  CAS  Google Scholar 

  147. Zhang X, Yang Y, Ding S, Que W, Zheng Z, Du Y (2017) Construction of high-quality SnO2@MoS2 nanohybrids for promising photoelectrocatalytic applications. Inorg Chem 56:3386–3393

    Article  CAS  Google Scholar 

  148. Zhang Y, Zeng W, Li Y (2018) Hydrothermal synthesis and controlled growth of hierarchical 3D flowerlike MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Appl Surf Sci 455:276–282

    Article  CAS  Google Scholar 

  149. Zhang Y, Zeng W, Li Y (2018) The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties. J Alloy Compd 749:355–362

    Article  CAS  Google Scholar 

  150. Zhao X, Ma X, Lu Q, Li Q, Han C, Xing Z, Yang X (2017) FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 as an excellent electrocatalyst for high-performance hydrogen evolution. Electrochim Acta 249:72–78

    Article  CAS  Google Scholar 

  151. Zhao S, Weng J, Jin S, Lv Y, Ji Z (2018) Chemical vapor transport deposition of molybdenum disulfide layers using H2O vapor as the transport agent. Coatings 8:78–86

    Article  CAS  Google Scholar 

  152. Zhou W, Jia J, Lu J, Yang L, Hou D, Li G (2016) Recent developments of carbon based electrocatalysts for hydrogen evolution reaction. Nano Energy 28:29–43

    Article  CAS  Google Scholar 

  153. Zhou W, Zhou K, Hou D, Liu X, Li G, Sang Y, Liu H, Li L, Chen S (2014) Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 6:21534–21540

    Article  CAS  Google Scholar 

  154. Zhu J, Wang ZC, Dai H, Wang Q, Yang R, Yu H, Liao M, Zhang J, Chen W, Wei Z, Li N, Du L, Shi D, Wang W, Zhang L, Jiang Y, Zhang G (2019) Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat Commun 10. https://doi.org/10.1038/s41467-019-09269-9

  155. Zuo LX, Jiang LP, Abdel-Halim ES, Zhu JJ (2017) Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction. Ultrason Sonochem 35:219–225

    Article  CAS  Google Scholar 

  156. Zuo LX, Jiang LP, Zhu JJ (2017) A facile sonochemical route for the synthesis of MoS2/Pd composites for highly efficient oxygen reduction reaction. Ultrason Sonochem 35:681–688

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwena D. Modibane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramohlola, K.E., Hato, M.J., Monama, G.R., Makhado, E., Iwuoha, E.I., Modibane, K.D. (2020). State-of-the-Art Advances and Perspectives for Electrocatalysis. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_13

Download citation

Publish with us

Policies and ethics