Skip to main content
Log in

Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The weak dielectric properties and the lack of magnetic loss of manganese-based absorbers are obstructed as the new generation of electromagnetic wave absorption (EMA) materials applying in microelectronic devices. Herein, the sulfuration and subsequent compounding strategies have been employed to enhance the EMA performance of multi-shell nanosphere-shaped Mn2O3 materials. With the narrow bandgap, the as-obtained MnS possesses reinforced electrical conductivity, which is conducive to conductivity loss. More importantly, the presence of potential difference between different phases will form space charge region at the heterogeneous interface, thus favoring interfacial polarization. Additionally, the improvement of magnetic loss is attributed to the presence of Co3O4 nanoparticles. Consequently, the composites present enhanced EMA performance than original Mn2O3. Specifically, the minimum reflection loss of as-prepared composites is −51.4 dB at the thickness of 1.8 mm and the broad effective absorption bandwidth reaches 6.2 GHz at 1.9 mm. The low matching thickness and high absorption efficiency in this work can provide a convincing reference when designing distinguished manganese-based absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv, H. L.; Yang, Z. H.; Xu, H. B.; Wang, L. Y.; Wu, R. B. An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 2020, 30, 1907251.

    Article  CAS  Google Scholar 

  2. Zhou, X. F.; Jia, Z. R.; Zhang, X. X.; Wang, B. B.; Liu, X. H.; Xu, B. H.; Bi, L.; Wu, G. L. Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 2021, 420, 129907.

    Article  CAS  Google Scholar 

  3. Yang, L. J.; Lv, H. L.; Li, M.; Zhang, Y.; Liu, J. C.; Yang, Z. H. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties. Chem. Eng. J. 2020, 392, 123666.

    Article  CAS  Google Scholar 

  4. Gao, Z. G.; Ma, Z. H.; Lan, D.; Zhao, Z. H.; Zhang, L. M.; Wu, H. J.; Hou, Y. L. Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202112294.

  5. Sun, Y.; Zhang, J. W.; Zong, Y.; Deng, X.; Zhao, H. Y.; Feng, J.; He, M.; Li, X. H.; Peng, Y.; Zheng, X. L. Crystalline-amorphous permalloy@iron oxide core—shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents. ACS Appl. Mater. Interfaces 2019, 11, 6374–6383.

    Article  CAS  Google Scholar 

  6. Dong, Y. Y.; Zhu, X. J.; Pan, F.; Deng, B. W.; Liu, Z. C.; Zhang, X.; Huang, C.; Xiang, Z.; Lu, W. Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv. Compos. Hybrid. Mater. 2021, 4, 1002–1014.

    Article  CAS  Google Scholar 

  7. Xu, X. F.; Shi, S. H.; Tang, Y. L.; Wang, G. Z.; Zhou, M. F.; Zhao, G. Q.; Zhou, X. C.; Lin, S. W.; Meng, F. B. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 2021, 8, 2002658.

    Article  CAS  Google Scholar 

  8. Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

    Article  CAS  Google Scholar 

  9. Zhang, M.; Li, Z. J.; Wang, T.; Ding, S. Q.; Song, G. Y.; Zhao, J.; Meng, A. L.; Yu, H. Y.; Li, Q. D. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 2019, 362, 619–627.

    Article  CAS  Google Scholar 

  10. Huang, X. G.; Qiao, M.; Lu, X. C.; Li, Y. F.; Ma, Y. B.; Kang, B.; Quan, B.; Ji, G. B. Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 2021, 14, 4006–4013.

    Article  CAS  Google Scholar 

  11. Guo, J.; Chen, Z. R.; Xu, X. J.; Li, X.; Liu, H.; Xi, S. H.; Abdul, W.; Wu, Q.; Zhang, P.; Xu, B. B. et al. Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid. Mater., in press, https://doi.org/10.1007/s42114-022-00417-2.

  12. Wu, N. N.; Zhao, B. B.; Liu, J. Y.; Li, Y. L.; Chen, Y. B.; Chen, L.; Wang, M.; Guo, Z. H. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv. Compos. Hybrid Mater. 2021, 4, 707–715.

    Article  CAS  Google Scholar 

  13. Guo, Y.; Jian, X.; Zhang, L.; Mu, C. H.; Yin, L. J.; Xie, J. L.; Mahmood, N.; Dou, S. X.; Che, R. C.; Deng, L. J. Plasma-induced FeSiAl@Al2O3@SiO2 core—shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 2020, 384, 123371.

    Article  CAS  Google Scholar 

  14. Gao, S.; Zhang, G. Z.; Wang, Y.; Han, X. P.; Huang, Y.; Liu, P. B. MOFs derived magnetic porous carbon microspheres constructed by core—shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2020, 88, 56–65.

    Article  CAS  Google Scholar 

  15. Lou, Z. C.; Wang, Q. Y.; Zhang, Y.; Zhou, X. D.; Li, R.; Liu, J.; Li, Y. J.; Lv, H. L. In-situ formation of low-dimensional, magnetic core—shell nanocrystal for electromagnetic dissipation. Compos. Part B:Eng. 2020, 274, 108744.

    Google Scholar 

  16. Cao, X. L.; Jia, Z. R.; Hu, D. Q.; Wu, G. L. Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption. Adv. Compos. Hybrid. Mater., in press, https://doi.org/10.1007/s42114-021-00415-w.

  17. Gao, S. T.; Zhang, Y. C.; Xing, H. L.; Li, H. X. Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 2020, 387, 124149.

    Article  CAS  Google Scholar 

  18. Wang, F.; Gu, W. H.; Chen, J. B; Wu, Y.; Zhou, M.; Tang, S. L.; Cao, X. Z.; Zhang, P.; Ji, G. B. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 2022, 15, 3720–3728.

    Article  CAS  Google Scholar 

  19. Zhang, M.; Ling, H. L.; Ding, S. Q.; Xie, Y. X.; Cheng, T. T.; Zhao, L. B.; Wang, T.; Bian, H. G.; Lin, H.; Li, Z. J. et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 2021, 174, 248–259

    Article  CAS  Google Scholar 

  20. Wang, C. X.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation. J. Mater. Sci. Technol. 2022, 108, 236–243.

    Article  Google Scholar 

  21. Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202200705.

  22. Wang, Y.; Gao, X.; Wu, X. M.; Luo, C. Y. Facile synthesis of Mn3O4 hollow polyhedron wrapped by multiwalled carbon nanotubes as a high-efficiency microwave absorber. Ceram. Int. 2020, 46, 1560–1568.

    Article  CAS  Google Scholar 

  23. Wang, R. L.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Liu, W. Q.; He, Q.; Wu, W. T.; Bu, X. H.; Yang, X. M. Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 2020, 156, 378–388.

    Article  CAS  Google Scholar 

  24. Qiao, M. T.; Li, J. X.; Wei, D.; He, X. W.; Lei, X. F.; Wei, J.; Zhang, Q. Y. Chain-like Fe3O4@void@mSiO2@MnO2 composites with multiple porous shells toward highly effective microwave absorption application. Microporous Mesoporous Mater. 2021, 314, 110867.

    Article  CAS  Google Scholar 

  25. Sun, C. H.; Jia, Z. R.; Xu, S.; Hu, D. Q.; Zhang, C. H.; Wu, G. L. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 113, 128–137.

    Article  Google Scholar 

  26. Lin, X. Y.; Wang, J.; Chu, Z. Y.; Liu, D. Q.; Guo, T. T.; Yang, L. N.; Huang, Z. Y.; Mu, S. T.; Li, S. The optimization of hydrothermal process of MoS2 nanosheets and their good microwave absorption performances. Chin. Chem. Lett. 2020, 37, 1124–1128.

    Article  CAS  Google Scholar 

  27. Liu, C.; Wang, B. C.; Mu, C. P.; Zhai, K.; Wen, F. S.; Xiang, J. Y.; Nie, A. M.; Liu, Z. Y. Enhanced microwave absorption properties of MnS2 microspheres interspersed with carbon nanotubes. J. Magn. Magn. Mater. 2020, 502, 166432.

    Article  CAS  Google Scholar 

  28. Liu, J. K.; Jia, Z. R.; Zhou, W. H.; Liu, X. H.; Zhang, C. H.; Xu, B. H.; Wu, G. L. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 2022, 429, 132253.

    Article  CAS  Google Scholar 

  29. Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Bi, L.; Wu, G. L. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875.

    Article  CAS  Google Scholar 

  30. Zhang, D. Q.; Jia, Y. X.; Cheng, J. Y.; Chen, S. M.; Chai, J. X.; Yang, X. Y.; Wu, Z. Y.; Wang, H.; Zhang, W. J.; Zhao, Z. L. et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures. J. Alloys Compd. 2018, 758, 62–71.

    Article  CAS  Google Scholar 

  31. Dong, S.; Hu, P. T.; Li, X. T.; Hong, C. Q.; Zhang, X. H.; Han, J. C. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 2020, 398, 125588.

    Article  CAS  Google Scholar 

  32. He, M.; Zhou, Y. M.; Huang, T. Y.; Nie, S. X.; Wang, Y. J.; Xu, Z. J.; Huo, Y.; Xu, R.; Chen, X.; Peng, H. Flower-like CoS hierarchitectures@polyaniline organic-inorganic heterostructured composites: Preparation and enhanced microwave absorption performance. Compos. Sci. Technol. 2020, 200, 108403.

    Article  CAS  Google Scholar 

  33. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A:Appl. Sci. Manuf. 2020, 128, 105670.

    Article  CAS  Google Scholar 

  34. Wang, Z. D.; Zhang, T.; Wang, J. K.; Yang, G. Q.; Li, M. L.; Wu, G. L. The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites. Nanomaterials (Basel) 2022, 12, 446.

    Article  CAS  Google Scholar 

  35. Meng, F. B.; Wang, H. G.; Wei, W.; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 2018, 11, 2847–2861.

    Article  CAS  Google Scholar 

  36. Wang, X. L.; Huang, X.; Chen, Z. R.; Liao, X. P.; Liu, C.; Shi, B. Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: Truly lightweight and high-performance microwave absorption materials. J. Mater. Chem. C 2015, 3, 10146–10153.

    Article  CAS  Google Scholar 

  37. Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

    Article  CAS  Google Scholar 

  38. Xiang, Z.; Huang, C.; Song, Y. M.; Deng, B. W.; Zhang, X.; Zhu, X. J.; Batalu, D.; Tutunaru, O.; Lu, W. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption. Carbon 2020, 167, 364–377.

    Article  CAS  Google Scholar 

  39. Luo, J. H.; Zhang, K.; Cheng, M. L.; Gu, M. M.; Sun, X. K. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem. Eng. J. 2020, 380, 122625.

    Article  CAS  Google Scholar 

  40. Huang, X. M.; Liu, X. H.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Wu, G. L. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. 2021, 4, 1398–1412.

    Article  CAS  Google Scholar 

  41. Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

    Article  CAS  Google Scholar 

  42. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  43. Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2021, 167, 148–159.

    Article  CAS  Google Scholar 

  44. Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 13319.

    Article  CAS  Google Scholar 

  45. Sun, L. F.; Jia, Z. R.; Xu, S.; Ling, M. B.; Hu, D. Q.; Liu, X. H.; Zhang, C. H.; Wu, G. L. Synthesis of NiCo2-0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties. Compos. Commun. 2022, 29, 100993.

    Article  Google Scholar 

  46. Ma, J. R.; Shu, J. C.; Cao, W. Q.; Zhang, M.; Wang, X. X.; Yuan, J.; Cao, M. S. A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@rGO/SiO2 composites. Compos. Part B:Eng. 2019, 166, 187–195.

    Article  CAS  Google Scholar 

  47. Deng, R. X.; Chen, B. B.; Li, H. G.; Zhang, K.; Zhang, T.; Yu, Y.; Song, L. X. MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption. Appl. Surf. Sci. 2019, 488, 921–930.

    Article  CAS  Google Scholar 

  48. Zhang, H. X.; Wang, B. B.; Feng, A. L.; Zhang, N.; Jia, Z. R.; Huang, Z. Y.; Liu, X. H.; Wu, G. L. Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B:Eng. 2019, 167, 690–699.

    Article  CAS  Google Scholar 

  49. Zhang, W. D.; Zhang, X.; Wu, H. J.; Yan, H. X.; Qi, S. H. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J. Alloys Compd. 2018, 751, 34–42.

    Article  CAS  Google Scholar 

  50. Xu, D. M.; Wu, N. N.; Le, K.; Wang, F. L.; Wang, Z.; Wu, L. L.; Liu, W.; Ouyang, A. C.; Liu, J. R. Bimetal oxides-derived flower-like heterogeneous Co/MnO@C composites with synergistic magnetic-dielectric attenuation for electromagnetic wave absorption. J. Mater. Chem. C 2020, 8, 2451–2459.

    Article  CAS  Google Scholar 

  51. Song, L. L.; Duan, Y. P.; Liu, J.; Pang, H. F. Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 2020, 13, 95–104.

    Article  CAS  Google Scholar 

  52. Feng, A. L.; Hou, T. Q.; Jia, Z. R.; Wu, G. L. Synthesis of a hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as a microwave absorber. RSC Adv. 2020, 10, 10510–10518.

    Article  CAS  Google Scholar 

  53. Yi, H. H.; Song, L. L.; Tang, X. L.; Zhao, S. Z.; Yang, Z. Y.; Xie, X. Z.; Ma, C. B.; Zhang, Y. Y.; Zhang, X. D. Effect of microwave absorption properties and morphology of manganese dioxide on catalytic oxidation of toluene under microwave irradiation. Ceram. Int. 2020, 46, 3166–3176.

    Article  CAS  Google Scholar 

  54. Hu, F. F.; Nan, H.; Wang, M. Q.; Lin, Y.; Yang, H. B.; Qiu, Y.; Wen, B. Construction of core—shell BaFe12O19@MnO2 composite for effectively enhancing microwave absorption performance. Ceram. Int. 2021, 47, 16579–16587.

    Article  CAS  Google Scholar 

  55. Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

    Article  CAS  Google Scholar 

  56. Zhang, X. Y.; Jia, Z. R.; Zhang, F.; Xia, Z. H.; Zou, J. X.; Gu, Z.; Wu, G. L. MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 610, 610–620.

    Article  CAS  Google Scholar 

  57. Zhang, S. J.; Cheng, B.; Gao, Z. G.; Lan, D.; Zhao, Z. W.; Wei, F. C.; Zhu, Q. S.; Lu, X. P.; Wu, G. L. Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects. J. Alloys Compd. 2022, 893, 162343.

    Article  CAS  Google Scholar 

  58. Gao, Z. G.; Lan, D.; Zhang, L. M.; Wu, H. J. Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2106677.

    Article  CAS  Google Scholar 

  59. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  60. Yan, H.; Dai, X. J.; Ruan, K. P.; Zhang, S. J.; Shi, X. T.; Guo, Y. Q.; Cai, H. Q.; Gu, J. W. Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid. Mater. 2021, 4, 36–50.

    Article  CAS  Google Scholar 

  61. Liu, Y.; Liu, X. H.; E, X. Y.; Wang, B. B.; Jia, Z. R.; Chi, Q. G.; Wu, G. L. Synthesis of Mn.xOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 2022, 103, 157–164.

    Article  Google Scholar 

  62. Zhang, F.; Jia, Z. R.; Wang, Z.; Zhang, C. H.; Wang, B. B.; Xu, B. H.; Liu, X. H.; Wu, G. L. Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber. Mater. Today Phys. 2021, 20, 100475.

    Article  CAS  Google Scholar 

  63. Wu, N. N.; Qiao, J.; Liu, J. R.; Du, W. J.; Xu, D. M.; Liu, W. Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads. Adv. Compos. Hybrid. Mater. 2018, 1, 149–159.

    Article  CAS  Google Scholar 

  64. Wang, X.; Pan, F.; Xiang, Z.; Zeng, Q. W.; Pei, K.; Che, R. C.; Lu, W. Magnetic vortex core—shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 2020, 157, 130–139.

    Article  CAS  Google Scholar 

  65. Zhang J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B:Eng. 2021, 222, 109067.

    Article  CAS  Google Scholar 

  66. Wang, J. W.; Jia, Z. R.; Liu, X. H.; Dou, J. L.; Xu, B. H.; Wang, B. B.; Wu, G. L. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 175.

    Article  CAS  Google Scholar 

  67. Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

    Article  CAS  Google Scholar 

  68. Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Shandong Province (No. ZR2019YQ24), Taishan Scholars and Young Experts Program of Shandong Province (No. tsqn202103057) and the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural-Functional Polymer Composites).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zirui Jia or Guanglei Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jia, Z., Zhan, Q. et al. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 15, 5590–5600 (2022). https://doi.org/10.1007/s12274-022-4287-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4287-5

Keywords

Navigation