Skip to main content
Log in

Synchronous constructing ion channels and confined space of Co3O4 anode for high-performance lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The yolk-shell structure has a unique advantage in lithium-ion batteries applications due to its ability to effectively buffer the volume expansion of the lithiation/delithiation process. However, its development is limited by the low contact point between the core and shell. Herein, we propose a general strategy of simultaneous construction of sufficient reserved space and multi-continuous active channels by pyrolysis of two carbon substrates. A double-shell structure consisting of Co3O4 anchored to hollow carbon sphere and external self-supporting zeolitic imidazolate framework (ZIF) layer was constructed by spray pyrolysis and additional carbon coating in-situ growth. In the process of high-temperature calcination, the carbon and nitrogen layers between the shells separate, creating additional space, while the Co3O4 particles between the shells remain are still in close contact to form continuous and fast electron conduction channels, which can realize better charge transfer. Due to the synergy of these design principles, the material has ultra-high initial discharge capacities of 2,183.1 mAh·g−1 at 0.2 A·g−1 with capacity of 1,121.36 mAh·g−1 after 250 cycles, the long-term capacities retention rate is about 92.4% after 700 cycles at 1 A·g−1. This unique channel-type double-shell structure fights a way out to prepare novel electrode materials with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    CAS  Google Scholar 

  2. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

    CAS  Google Scholar 

  3. Jiao, S. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Ion sieve: Tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 2022, 16, 1013–1024.

    CAS  Google Scholar 

  4. Liu, W.; Liu, P. C.; Mitlin, D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 2020, 10, 2002297.

    CAS  Google Scholar 

  5. Qin, K. Q.; Holguin, K.; Mohammadiroudbari, M.; Huang, J. H.; Kim, E. Y. S.; Hall, R.; Luo, C. Strategies in structure and electrolyte design for high-performance lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2009694.

    CAS  Google Scholar 

  6. Liu, H.; Liu, X.; Wang, S. L.; Liu, H. K.; Li, L. Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Mater. 2020, 28, 122–145.

    Google Scholar 

  7. Cong, L. D.; Zhang, S. C.; Zhu, H. Y.; Chen, W. X.; Huang, X. Y.; Xing, Y. L.; Xia, J.; Yang, P. H.; Lu, X. Structure-design and theoretical-calculation for ultrasmall Co3O4 anchored into ionic liquid modified graphene as anode of flexible lithium-ion batteries. Nano Res. 2022, 15, 2104–2111.

    CAS  Google Scholar 

  8. Hou, J. B.; Yang, M.; Wang, D. Y.; Zhang, J. L. Fundamentals and challenges of lithium ion batteries at temperatures between-40 and 60 °C. Adv. Energy Mater. 2020, 10, 1904152.

    CAS  Google Scholar 

  9. Wu, D. B.; Wang, C.; Wu, H. J.; Wang, S.; Wang, F. Q.; Chen, Z.; Zhao, T. B.; Zhang, Z. Y.; Zhang, L. Y.; Li, C. M. Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries. Carbon 2020, 163, 137–144.

    CAS  Google Scholar 

  10. Dong, Y.; Jiang, X. Y.; Mo, J. H.; Zhou, Y. Z.; Zhou, J. P. Hollow CuO nanoparticles in carbon microspheres prepared from cellulose-cuprammonium solution as anode materials for Li-ion batteries. Chem. Eng. J. 2020, 381, 122614.

    CAS  Google Scholar 

  11. Li, L.; Dai, J.; Jiang, G. X.; Sun, X. Y.; Huang, Z. H.; Xie, Z. J.; Cao, B. Q. Three-dimensional mesoporous straw-like Co3O4 anode with enhanced electrochemical performance for lithium-ion batteries. ChemistrySelect 2019, 4, 6879–6885.

    CAS  Google Scholar 

  12. Wang, C. H.; Bai, G. L.; Yang, Y. F.; Liu, X. J.; Shao, H. X. Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 2019, 12, 217–223.

    CAS  Google Scholar 

  13. Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.

    CAS  Google Scholar 

  14. Liu, M. T.; Deng, X.; Ma, Y. D.; Xie, W. H.; Hou, X. Y.; Fu, Y. J.; He, D. Y. Well-designed hierarchical Co3O4 Architecture as a longlife and ultrahigh rate capacity anode for advanced lithium-ion batteries. Adv. Mater. Interfaces 2017, 4, 1700553.

    Google Scholar 

  15. Huang, Y.; Fang, Y. J.; Lu, X. F.; Luan, D. Y.; Lou, X. W. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew. Chem., Int. Ed. 2020, 59, 19914–19918.

    CAS  Google Scholar 

  16. Zhang, K.; Xiong, F. Y.; Zhou, J. P.; Mai, L. Q.; Zhang, L. N. Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano Energy 2020, 67, 104222.

    CAS  Google Scholar 

  17. Sun, B. Y.; Lou, S. F.; Zheng, W.; Qian, Z. Y.; Cui, C.; Zuo, P. J.; Du, C. Y.; Xie, J. Y.; Wang, J. J.; Yin, G. P. Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy 2020, 78, 105366.

    CAS  Google Scholar 

  18. Cao, Z. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Mater. 2021, 40, 10–21.

    Google Scholar 

  19. Yu, M. K.; Sun, Y. X.; Du, H. R.; Wang, C.; Li, W.; Dong, R. H.; Sun, H. X.; Geng, B. Y. Hollow porous carbon spheres doped with a low content of Co3O4 as anode materials for high performance lithium-ion batteries. Electrochim. Acta 2019, 317, 562–569.

    CAS  Google Scholar 

  20. Sennu, P.; Madhavi, S.; Aravindan, V.; Lee, Y. S. Co3O4 nanosheets as battery-type electrode for high-energy Li-ion capacitors: A sustained Li-storage via conversion pathway. ACS Nano 2020, 14, 10648–10654.

    CAS  Google Scholar 

  21. Lee, J. S.; Jo, M. S.; Saroha, R.; Jung, D. S.; Seon, Y. H.; Lee, J. S.; Kang, Y. C.; Kang, D. W.; Cho, J. S. Hierarchically well-developed porous graphene nanofibers comprising N-doped graphitic C-coated cobalt oxide hollow nanospheres as anodes for high-rate Li-ion batteries. Small 2020, 16, 2002213.

    CAS  Google Scholar 

  22. Fan, H. Y.; Yi, G. Y.; Tian, Q. M.; Zhang, X. X.; Xing, B. L.; Zhang, C. X.; Chen, L. J.; Zhang, Y. L. Hydrothermal-template synthesis and electrochemical properties of Co3O4/nitrogen-doped hemisphere-porous graphene composites with 3D heterogeneous structure. RSC Adv. 2020, 10, 36794–36805.

    CAS  Google Scholar 

  23. Kuai, L.; Geng, J.; Chen, C. Y.; Kan, E. J.; Liu, Y. D.; Wang, Q.; Geng, B. Y. A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2014, 53, 7547–7551.

    CAS  Google Scholar 

  24. Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791–802.

    CAS  Google Scholar 

  25. Chai, Y. J.; Du, Y. H.; Li, L.; Wang, N. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries. Nanotechnology 2020, 31, 215402.

    CAS  Google Scholar 

  26. Zhang, Y. F.; Xie, M. H.; He, Y. B.; Zhang, Y. M.; Liu, L. D.; Hao, T. Q.; Ma, Y.; Shi, Y. F.; Sun, Z. J.; Liu, N. et al. Hybrid NiO/Co3O4 nanoflowers as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 2021, 420, 130469.

    CAS  Google Scholar 

  27. Huang, S. J.; Yang, L. W.; Xu, G. B.; Wei, T. Y.; Tian, J.; Liu, X.; Li, H. P.; Xiang, Z. Y.; Cao, J. X.; Wei, X. L. Hollow Co3O4@N-doped carbon nanocrystals anchored on carbon nanotubes for freestanding anode with superior Li/Na storage performance. Chem. Eng. J. 2021, 415, 128861.

    CAS  Google Scholar 

  28. Sun, H. X.; Du, H. R.; Yu, M. K.; Huang, K. F.; Yu, N.; Geng, B. Y. Vesicular Li3V2(PO4)3/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries. Nano Res. 2019, 12, 1937–1942.

    CAS  Google Scholar 

  29. Liu, Y.; Peng, Y. M.; Naschitzki, M.; Gewinner, S.; Schöllkopf, W.; Kuhlenbeck, H.; Pentcheva, R.; Roldan Cuenya, B. Surface oxygen vacancies on reduced Co3O4(100): Superoxide formation and ultra-low-temperature CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 16514–16520.

    CAS  Google Scholar 

  30. Quast, T.; Aiyappa, H. B.; Saddeler, S.; Wilde, P.; Chen, Y. T.; Schulz, S.; Schuhmann, W. Single-entity electrocatalysis of individual “picked-and-dropped” Co3O4 nanoparticles on the tip of a carbon nanoelectrode. Angew. Chem., Int. Ed. 2021, 60, 3576–3580.

    CAS  Google Scholar 

  31. Xu, K. Q.; Shen, X. P.; Song, C. S.; Chen, H. Y.; Chen, Y.; Ji, Z. Y.; Yuan, A. H.; Yang, X. L.; Kong, L. R. Construction of rGO-encapsulated Co3O4-CoFe2O4 composites with a double-buffer structure for high-performance lithium storage. Small 2021, 17, 2101080.

    CAS  Google Scholar 

  32. Fang, L. B.; Bahlawane, N.; Sun, W. P.; Pan, H. G.; Xu, B. B.; Yan, M.; Jiang, Y. Z. Conversion-alloying anode materials for sodium ion batteries. Small 2021, 17, 2101137.

    CAS  Google Scholar 

  33. Sun, R.; Bai, Y.; Luo, M.; Qu, M. X.; Wang, Z. H.; Sun, W.; Sun, K. N. Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium-sulfur batteries. ACS Nano 2021, 15, 739–750.

    CAS  Google Scholar 

  34. Park, G. D.; Park, J. S.; Kim, J. K.; Kang, Y. C. Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries. Adv. Energy Mater. 2021, 11, 2003058.

    CAS  Google Scholar 

  35. Lu, J. L.; Li, J.; Wan, J.; Han, X. Y.; Ji, P. Y.; Luo, S.; Gu, M. X.; Wei, D. P.; Hu, C. G. A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance. Nano Res. 2021, 14, 2410–2417.

    CAS  Google Scholar 

  36. Yao, Q. Q.; Gan, Y. M.; Ma, Z. J.; Qian, X. Y.; Cai, S. Z.; Zhao, Y.; Guan, L. H.; Huang, W. Approaching superior potassium storage of carbonaceous anode through a combined strategy of carbon hybridization and sulfur doping. Energy Environ. Mater. 2021.

  37. Lim, K. R. G.; Handoko, A. D.; Nemani, S. K.; Wyatt, B.; Jiang, H. Y.; Tang, J. W.; Anasori, B.; Seh, Z. W. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 2020, 14, 10834–10864.

    CAS  Google Scholar 

  38. Huang, R. L.; Lin, J.; Zhou, J. H.; Fan, E. S.; Zhang, X. X.; Chen, R. J.; Wu, F.; Li, L. Hierarchical triple-shelled MnCo2O4 hollow microspheres as high-performance anode materials for potassium-ion batteries. Small 2021, 17, 2007597.

    CAS  Google Scholar 

  39. Meng, T.; Li, B.; Wang, Q. S.; Hao, J. N.; Huang, B. B.; Gu, F. L.; Xu, H. M.; Liu, P.; Tong, Y. X. Large-scale electric-field confined silicon with optimized charge-transfer kinetics and structural stability for high-rate lithium-ion batteries. ACS Nano 2020, 14, 7066–7076.

    CAS  Google Scholar 

  40. Shi, J. W.; Zu, L. H.; Gao, H. Y.; Hu, G. X.; Zhang, Q. Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management. Adv. Funct. Mater. 2020, 30, 2002980.

    CAS  Google Scholar 

  41. Zhang, S. L.; Guan, B. Y.; Wu, H. B.; Lou, X. W. D. Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 2018, 10, 44.

    Google Scholar 

  42. Zhu, J. K.; Tu, W. M.; Pan, H. F.; Zhang, H.; Liu, B.; Cheng, Y. P.; Deng, Z.; Zhang, H. N. Self-templating synthesis of Hollow Co3O4 nanoparticles embedded in N,S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano 2020, 14, 5780–5787.

    CAS  Google Scholar 

  43. Zhang, R. H.; Li, Y.; Wang, M.; Li, D. W.; Zhou, J. J.; Xie, L.; Wang, T.; Tian, W.; Zhai, Y. J.; Gong, H. Y. et al. Super-assembled hierarchical CoO nanosheets-Cu foam composites as multi-level hosts for high-performance lithium metal anodes. Small 2021, 17, 2101301.

    CAS  Google Scholar 

  44. Du, H. R.; Huang, K. F.; Li, M.; Xia, Y. Y.; Sun, Y. X.; Yu, M. K.; Geng, B. Y. Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials. Nano Res. 2018, 11, 1490–1499.

    CAS  Google Scholar 

  45. Adekoya, D.; Chen, H.; Hoh, H. Y.; Gould, T.; Balogun, M. S. J. T.; Lai, C.; Zhao, H. J.; Zhang, S. Q. Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage. ACS Nano 2020, 14, 5027–5035.

    CAS  Google Scholar 

  46. Liu, H. X.; Zhang, W. L.; Song, Y.; Li, L. L.; Zhang, C. W.; Wang, G. K. Superior rate mesoporous carbon sphere array composite via intercalation and conversion coupling mechanisms for potassium-ion capacitors. Adv. Funct. Mater. 2021, 31, 2107728.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21871005 and 22171005), the Program for Innovative Research Team of Anhui Education Committee, the Project for Collaborative Innovation of Anhui Higher Education Institutes (Nos. GXXT-2020-005, GXXT-2021-012, and GXXT-2021-013), the Natural Science Foundation of the Education Department of Anhui Province (No. KJ2020A0075), and the Foundation of the Anhui Province Key Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources (No. LCECSC-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyou Geng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, C., Chen, F. et al. Synchronous constructing ion channels and confined space of Co3O4 anode for high-performance lithium-ion batteries. Nano Res. 15, 6192–6199 (2022). https://doi.org/10.1007/s12274-022-4281-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4281-y

Keywords

Navigation